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Abstract 

 

    We present a new test generation procedure for sequential 
circuits using newly traversed state and newly detected fault 
information obtained between successive iterations of vector 
compaction.  Two types of techniques are considered. One is 
based on which new states a sequential circuit is driven into, 
and the other is based on the new faults that are detected in 
the circuit between consecutive iterations of vector 
compaction. These data modify an otherwise random 
selection of vectors, to bias vector sequences that cause the 
circuit to reach new states, and cause previously undetected 
faults to be detected. The biased vectors, when use d to 
extend the compacted test set, provide an intelligent  
selection of vectors. The extended test set is then compacted.  
Repeated applications of state and fault analysis, vector 
generation and compaction produce significantly high fault 
coverage using relatively small computing resources. We 
obtained improvements in terms of higher fault coverage, 
fewer vectors for the same coverage, or smaller number of 
iterations and time required, consistently for several 
benchmark circuits. 
 

1. Introduction 
 

    Random test generation, proposed in [3], used a pseudo-

random pattern generator to approximate the behavior of 

random patterns. As explained in [1], randomly generated 

patterns are useful for certain types of circuits, while they do 

not produce good fault coverage in other circuits. Further, 

they generally require a large test set size [2]. Certain lines 

in the circuit cannot be set to a specific logic value using 

purely random vectors, making faults on those lines hard to 

detect. These faults are called random pattern resistant 

faults. Weighted random patterns have been found to yield 

higher fault coverages in circuits that contain such types of 

hard to detect faults. Much work has been done on weighted 

random pattern generation [4,5]. In these approaches, the 

probability of getting a 0 or a 1 at a particular input is biased 

towards detecting random resistant faults. With weighted 

random patterns, the difficulty that arises is that no one set 

of weights may be suitable for all faults even in a 

combinational circuit. In the case of sequential circuits, the 

faults may need a biased internal state besides a biased input 

vector. So, it is more difficult to obtain a good set of weights 

at the primary inputs using only structural techniques. Static 

compaction procedures extract a set of "necessary" vectors 

from a given test set. Vector restoration techniques [6,7] aim 

to restore sufficient vectors necessary to detect all faults. 

Various methods to extend the compacted test set are given 

in [8,9], including randomly picking a vector from the 

compacted test set and holding it a given number of times, 

perturbing a few bits in a randomly chosen vector and 

holding it a given number of times, and copying over a 

sequence of vectors to generate new vectors. In these 

techniques, vectors are chosen randomly to extend the test 

set. In [10], the authors present a technique to generate tests 

for sequential circuits using weighted random vectors and a 

static compaction procedure while in [11], the correlation 

among test vectors was studied and this information was 

used to generate test vectors. 
 

    In our work, we would like to bias some "useful" vectors 

by making sure that they have a higher probability of being 

chosen. Thus, rather than having a purely uniform 

distribution of vectors, we introduce some non-uniformity 

into the process. Useful vectors are obtained using two broad 

categories. These are: New-State vectors that drive the 

sequential circuit into new states during successive 

iterations, and New-Fault vectors that obtain new faults 

during successive iterations. We show that with New State 

vectors, we are able to visit a greater number of useful 

(including previously unvisited) states in each iteration. This 

leads to the detection of more hard-to-detect faults in each 

iteration. So, we want to utilize and learn from the vectors 

that lead to the detection of these new states. We use this 

information obtained by analyzing the compacted set of 

vectors to intelligently choose useful vectors such that fewer 

vectors can achieve the same, or higher fault coverage in a 

smaller amount of time. 

 

2. Overview of the Test Generation  
     Procedure 
 

    Figure 1 presents an overall picture of the Test Generation  

Procedure using vector compaction. The algorithm is given 

below: 

-Initialize iteration number i  to 0  
-Generate L random vectors to form a random input  
  sequence S0 



while (the terminating condition is not satisfied) 
  -Fault simulate Si on the circuit under test  
   -Apply static compaction on Si to obtain a  
      compacted test sequence Sic 
   -Extend the compacted sequence by generating  
      vectors to form a suffix Sisu  
   -Increment i for the next iteration  

 

 

    There can be three possible terminating conditions. These 

are: desired fault coverage is obtained, preset time for which 

the experiments were conducted is reached, and number of 

iterations of test set extension and compaction is reached. 

We chose the number of iterations as the terminating 

condition. 

  

    This paper focuses on methods of extending the 

compacted test set (i.e. obtaining suffix Sisu) by using New-

State Prefix Vectors, New-State Postfix Vectors, New-Fault 

Vectors and Threshold-Fault Vectors. 

 

3. Definitions 
 

1) New-State Prefix Vectors: A sequence of "m" vectors 

that lead to a newly visited state between consecutive 

iterations of compaction and fault simulation is called 

New-State Prefix (NSPR) Vectors. They are obtained as 

follows: Identify the different states that a circuit is 

driven into during two successive iterations. In iteration 

i, the states that were reached in iteration i-1 are 

compared with those that have been previously reached. 

NSPR vectors are the sequence of "m" vectors that lead 

to the new state. "m" is chosen to be the minimum 

circuit depth, which is the minimum number of Flip 

Flops on any path  from a primary input to a primary 

output. This information is recorded in the State Matrix.  

 

2) New-State Postfix Vectors: A sequence of "n" vectors 

that follow the vector that drives the circuit into a new 

state in consecutive iterations is called New-State 
Postfix (NSPO) Vectors.  "n" is chosen to be 5. This 

information is recorded in the State Matrix. Both NSPR 

and NSPO vectors are shown in Figure 2. 

3) New-Fault Vectors: A sequence of "m" vectors that 

lead to the detection of a new fault between consecutive 

iterations of compaction and fault simulation is called 

New-Fault (N-F) Vectors. They are obtained as 

follows: Identify the different faults that are detected 

during two successive iterations. In iteration i, the faults 

that were detected in iteration i-1 are compared with 

those that have been detected previously. N-F vectors 

are the sequence of "m" vectors that lead to the 

detection of the new fault. As before, "m" is chosen to 

be the minimum circuit depth.  This information is 

recorded in the Fault Matrix. 

 

4) Threshold-Fault Vectors: Vectors detecting faults 

equal to or greater than the threshold fault number are 

identified, and a sequence of "m" vectors prior to each 

of these vectors is called Threshold-Fault (T-F) 
Vectors. They are obtained as follows: Identify the 

number of faults detected by each vector. Set a 

threshold number of faults. The sequence of "m-1" 

vectors that occur prior to the vector that detects more 

faults than the threshold value, and the vector under 

consideration form the T-F vectors. As  before,  "m"  is  

chosen  to  be  the  minimum sequential depth.  This 

information is recorded in the Fault Number Matrix. 

Both N-F and T-F vectors are shown in  Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 1: Overview of Test Generation 
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Figure 3: New-Fault and Threshold-Fault Vectors 
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Figure 2: New-State Prefix and New-State 
                 Postfix Vectors  
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Figure 4: Reasons for biasing NSPR and NSPO
                vectors 

 4. Test Generation Approach 
 

    Since the NSPR vectors lead to the detection of new states 

between consecutive iterations, they help span the state 

space of the circuit. Let us consider a circuit for which we 

have just visited a new state as depicted in Figure 4; 

exploring neighboring states of this newly visited state may 

help us in detecting faults that require one of these new 

states as an intermediate state to excite the fault, or 

propagate it to a primary output. As shown, there is a 

sequence of vectors (Vseq) that takes us from a relatively well 

explored state subspace, to a state that has not been 

previously visited. There may exist other sequences that take 

us back from this newly visited state to the previously 

explored subspace. Since the newly visited state detected a 

hard-to-detect fault, Vseq is a valuable sequence. We 

postulate that the state subspace around this state might be 

useful in detecting other previously undetected hard-to-

detect faults. To do so, whenever some sequence takes us 

back to the previously explored state space, we would need 

to get back to the new unexplored subspace. However, it is 

not easy to do so, otherwise this region would have already 

been explored earlier. We know that the vector sequence 

Vseq had led us to the previously unvisited state earlier and 

can do so again. So, we bias it with a higher priority by 

choosing to bias the NSPR and NSPO as important vectors.  

 

    Similarly, the N-F vectors lead to the detection of new 

faults in consecutive iterations. This proves that they are 

useful in detecting hard-to-detect faults, because they are 

vectors that detect faults that could not be detected in earlier 

iterations. The T-F vectors that detect a large number of 

faults have already demonstrated their usefulness, so we use 

them to extend the compacted test set. We believe that these 

vectors, when compacted, might lead to the detection of 

more faults in subsequent iterations. 

 

Algorithms for our two techniques are described below: 

 

Technique 1: Using NSPR and NSPO Vectors. 
 

While (number of vectors less than cut-off) 
       -Randomly pick a vector from the compacted  
        test set, perturb a few bits in it and hold it a  
        random number of times.  
       -Copy over a sequence of five vectors from  
        the compacted test set to generate new vectors.  
        -Randomly pick an NSPR/NSPO vector  
          from the State Matrix and copy over a      
         sequence of "m" vectors prior to this vector  
         and "n" vectors after this vector.  
        -From the State Matrix information  
         generated above, r andomly pick an  
         NSPR/NSPO vector, perturb a few bits in it  
         and hold it a random number of times.  
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 
 
 
 
 
 
 
Technique 2: Using N-F and T-F Vectors. 
 

While (number of vectors less than cut-off) 
       -Randomly pick a vector from the compacted  
        test set, perturb a few bits in it and hold it a  
        random number of times.  
        -Copy over a sequence of five vectors from  
        the compacted test set to generate new vectors.  
        -From the Fault Matrix, randomly pick an   
        N-F vector, perturb a few bits in it and hold  
        it a random number of times.  
        -Randomly pick an N-F vector from the  
        Fault Matrix, and copy over a sequence of  
        "m" vectors prior to this vector.  
        -Randomly pick a T-F vector from the Fault  
        Number Matrix, perturb a few bits in it and  
        hold it a random number of times.   

        -Randomly pick a T-F vector from the Fault 
        Number Matrix, and copy over a sequence  
        of "m" vectors prior to this vector.  
 

    We choose the cut-off value, the number of bits perturbed 

in a vector, and the number of times a vector is held in a 

similar manner as [8]. The cut-off value is initially set to 

2,000 vectors. If two consecutive sequences do not detect 

any new faults, the cut-off is increased to the next higher 

value. Possible values that can be assigned to cut-off are 

5,000, 10,000, 20,000 and 40,000. The cut -off is never 

increased beyond 40,000 because this would result in an 

excessive time for fault simulation while the compaction 

process occurs. Zero, one, two or three bits can be perturbed 

with equal probability in a vector. A vector can be held for 2
i
 

time units, with a probability of 2
-(i+1)

 for 0 ≤ i ≤7, and 2
-8

 for 

i = 8.  
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5. Results 
 

    All experiments were conducted on an Ultra SPARC 10 

with 256 MB of RAM for some ISCAS 89 and ITC 99 

benchmark circuits. 

  

    The fault simulator used in our experiments targets all the 

faults in the circuit in each iteration. Other previously 

reported techniques target 128 [8] and 256 [9] randomly 

selected faults in the initial iterations, and gradually increase 

the sample size until all the undetected faults are targeted in 

later iterations. This leads to a disparity in the execution time 

taken for fault simulation during compaction. To remove this 

disparity and obtain a suitable platform for comparison, we 

implemented the algorithm suggested by [8] and used our 

fault simulator and compactor. As mentioned earlier, we 

fixed an upper bound of 125 iterations as the terminating 

condition.  

 

    Before going into the detailed results of our experiments, 

Figures 5, 6, 7 and 8 show the key idea of how the useful 

new states obtained from biasing NSPR and NSPO vectors 

can help in test generation. Figure 5 gives the total number 

of states visited in s382 during the first ten  iterations for our  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

technique   using   NSPR   and   NSPO   vectors,   versus  the  

number of states reached for our implementation of the 

technique in [8]. Figure 6 shows the total number of faults 

detected in the s382 in the corresponding iterations for both 

techniques. For example, by iteration 2, our NSPR/NSPO 

technique has visited 1147 states, while the original 

implementation [8] visited 926 states. These 221 additional 

states helped to detect 9 additional hard faults in that 

iteration, as indicated in Figure 6. Consistently, our 

technique visits a greater number of new states and detects 

363 faults by the sixth iteration, while our implementation of 

the technique in [8] required 10 iterations to reach the same 

number of faults. Thus, we are able to detect faults faster.  

 

    Likewise, Figure 7 gives the total number of states visited 

in the b11 during the first ten iterations for our technique 

using NSPR and NSPO vectors, versus the number of states 

reached for our implementation of the technique in [8]. 

Figure 8 shows the total number of faults detected in the b11 

in the corresponding iterations for both techniques. As seen 

in these two figures, our technique visits a greater number of 

new states and detects more faults in a lower number of 

iterations when compared to our implementation of the 

technique in [8]. 

                Figure 8: Total Faults detected for b11                Figure 7: Total States visited for b11

             Figure 5: Total States visited for s382                Figure 6: Total Faults detected for s382 
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    Going into detailed results, the results for the technique in 

[9] are shown in Table 1, while the results for our 

implementation of the technique in [8] are shown in Table 2. 

In Table 1, column 1 gives the circuit name, while columns 

2, 3 and 4 give the number of faults detected, test set size, 

and the time taken to detect the indicated number of faults 

respectively. For example, for s382, 364 faults were detected 

with a test set size of 572. The time required was 0.46 

minutes. In Table 2, columns 1 to 4 represent the same 

parameters as Table 1. Column 5 gives the number of 

iterations required to achieve the fault coverage.  For 

example, for s400, 382 faults were detected with a test set 

size of 617 vectors. 6 minutes and 9 iterations were required. 

 

    The results for our techniques are shown in Table 3. 

Column 1 gives the circuit name, while columns 2, 3, 4 and 

5 give the number of faults detected, test set size, the time 

taken and number of iterations required to detect the 

indicated number of faults respectively for the technique in 

[8], columns 6, 7, 8 and 9 give these parameters for the 

technique using NSPR and NSPO vectors to extend the 

compacted test set, while columns 10, 11, 12 and 13 give 

these parameters for the technique using N-F and T-F 

vectors to extend the compacted test set.  

 

    Comparing the results obtained in Tables 1 and 3, we can 

see that for most circuits, our techniques require a smaller 

test set size to achieve the same high fault coverage. For 

example, in the technique using NSPR and NSPO vectors, 

the number of vectors required is about 13% less for the 

s526, about 16% less for the s1488, about 9% less for the 

s1494, and about 5% less for the b11 when compared to the 

method used in [9]. Comparing columns 3 and 7 of Table 3, 

the number of vectors required by this technique is about 

34% less for  the  b01and about 57% less for the b04. We are 

also able to detect two more faults in the s400 and 393 more 

faults in the b21, and obtain 51 more faults and use about 

35% less vectors for the b12 in comparison with the method 

used in [9]. 

 

    In the technique using N-F and T-F vectors to extend the 

compacted test set, the number of vectors required is about 

13% less for the s1494 when compared to the method used 

in [9]. Comparing columns 3 and 11 of Table 3, the number 

of vectors required by this technique is about 31% less for 

the b04, and about 25% less for the b08. We are also able to 

detect one more fault in the s400 and 180 additional faults 

using 751 less vectors for b21 in comparison with the 

method used in [9]. 

 

    A possible explanation of why the technique in [9] 

requires fewer vectors than our techniques for certain 

circuits is that we used a Linear Reverse Order Restoration 

Algorithm mentioned in [8], but restored two vectors at a 

time, while the technique in [9] uses a Radix Reverse Order 

Restoration Algorithm. 

 

    Comparing the iterations taken for our implementation of 

the technique in [8] (Table 3, column 5), with the iterations 

required for our NSPR and NSPO technique (Table 3, 

column 9), we observe that the number of iterations required 

to achieve the fault coverage is about 38% less for the s382, 

about 68% less for the s526, about 59% less for the s1423 

and about 80% less for the s1488 and s1494. Similarly, we 

obtain major improvements in the number of iterations 

required using N-F and T-F vectors (Table 3, column 13). 

Thus, we not only obtain savings in the test set size, but also 

need fewer iterations and less time to obtain the same high 

fault coverage. 

 

PREVIOUS METHOD [9] 

Circuit 
 

Det. Vec. Time 
(min.) 

s382 

s400 

s526 

s713 

s1196 

s1238 

s1423 

s1488 

s1494 

s5378 

b11 

b12 

b21 

 

364 

382 

454 

476 

1239 

1283 

1416 

1444 

1453 

3643 

1004 

1470 

18023 

572 

677 

1557 

104 

224 

235 

1049 

426 

454 

672 

419 

3697 

12651 

 

0.46 

0.65 

2.64 

0.13 

0.4 

0.44 

8.84 

1.93 

2.2 

35.55 

1.59 

27.49 

135.72 

 

 PREVIOUS METHOD [8] 

Circuit 
 

Det.  Vec. Time 
(min.) 

Iter. 

s382 

s400 

s526 

s713 

s1196 

s1238 

s1423 

s1488 

s1494 

s5378 

b01 

b04 

b08 

b11 

b12 

b21 

364 

382 

454 

476 

1239 

1283 

1416 

1444 

1453 

3643 

133 

1168 

463 

1004 

1470 

18023 

641 

617 

1854 

205 

241 

334 

1387 

549 

508 

672 

91 

416 

422 

496 

3697 

14946 

26 

6 

51 

4 

13 

18 

171 

59 

89 

840 

0.5 

14 

9 

22 

292 

6910 

21 

9 

47 

10 

47 

46 

87 

79 

73 

117 

5 

18 

19 

33 

66 

51 

Det. = Faults Detected    Vec. = # Vectors in Test Set

Iter. = # Iterations required 

Table 2: Implementation of the original algorithm 
                in [8] without fault samples  

Det. = Faults Detected   

Vec. = # Vectors in Test Set 

          Table 1: Results reported in [9] 



 A) [8] without fault samples 
 

B) Using NSPR and NSPO 
vectors 

C) Using N-F and T-F 
Vectors 

Circuit 
 

Det. Vec. Time 
(min.) 

Iter. Det.  Vec. Time 
(min.) 

Iter. 
 

Det. Vec. Time 
(min.) 

Iter. 
 

 

s382 

s400 

s526 
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1470 

18023 

 

641 

617 

1854 
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91 
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364 

384 

454 

476 

1239 

1283 

1416 

1444 

1453 

3643 

133 

1168 

463 

1004 

1521 

18416 

 

897 

807 

1349 

85 

229 

245 

1209 

360 

417 

1412 

60 

180 

390 

399 

2418 

16139 

 

12 

7 

21 

0.5 

15 

13 

60 

15 

6 

155 

0.1 

3 

2 

20 

93 

3662 

 

13 

7 

15 

4 

48 

43 

36 

16 

15 

28 

5 

10 

11 

28 

31 

22 

 

364 

383 

454 

476 

1239 

1283 

1416 

1444 

1453 

3643 

133 

1168 

463 

1004 

1516 

18203 

 

764 

766 

1548 

79 

245 

290 

1249 

430 

393 

889 

82 

289 

316 

461 

2400 

11900 

 

4 

3 

18 

1 

7 

6 

47 

9 

8 

148 

0.2 

5 

3 

10 

55 

3651 

 

7 

9 

14 

4 

28 

25 

31 

16 

16 

32 

3 

15 

14 

18 

25 

35 

 

6. Conclusions 
 

We have proposed a new and efficient technique for 

extending the compacted test set, using information based 

on new states reached during successive iterations, and 

new faults detected between consecutive iterations. Our 

results show that, as in previous methods, high fault 

coverage was achieved.  In  some  cases, we detected more 

faults than have been previously reported. A significant 

improvement in fault coverage for the b12 and b21 was 

observed using both the NSPR/NSPO technique and the  

N-F/T-F technique. At the same time, the number of 

vectors required to achieve the high level of fault coverage 

was fewer than other techniques required, while the 

number of iterations needed, and the time taken was also 

lower.  
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