
Asian Test Symposium, 2000, pp. 159-164

Compaction-Based Test Generation Using State and Fault Information

Ashish Giani
*
, Shuo Sheng

*
, Michael Hsiao

*
, Vishwani D. Agrawal

**

*
 Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854.

{ashishg, shuo, mhsiao} @ece.rutgers.edu

**
 Bell Labs, Lucent Technologies, Murray Hill, NJ 07974

va@research.bell-labs.com

Abstract

 We present a new test generation procedure for sequential
circuits using newly traversed state and newly detected fault
information obtained between successive iterations of vector
compaction. Two types of techniques are considered. One is
based on which new states a sequential circuit is driven into,
and the other is based on the new faults that are detected in
the circuit between consecutive iterations of vector
compaction. These data modify an otherwise random
selection of vectors, to bias vector sequences that cause the
circuit to reach new states, and cause previously undetected
faults to be detected. The biased vectors, when use d to
extend the compacted test set, provide an intelligent
selection of vectors. The extended test set is then compacted.
Repeated applications of state and fault analysis, vector
generation and compaction produce significantly high fault
coverage using relatively small computing resources. We
obtained improvements in terms of higher fault coverage,
fewer vectors for the same coverage, or smaller number of
iterations and time required, consistently for several
benchmark circuits.

1. Introduction

 Random test generation, proposed in [3], used a pseudo-

random pattern generator to approximate the behavior of

random patterns. As explained in [1], randomly generated

patterns are useful for certain types of circuits, while they do

not produce good fault coverage in other circuits. Further,

they generally require a large test set size [2]. Certain lines

in the circuit cannot be set to a specific logic value using

purely random vectors, making faults on those lines hard to

detect. These faults are called random pattern resistant

faults. Weighted random patterns have been found to yield

higher fault coverages in circuits that contain such types of

hard to detect faults. Much work has been done on weighted

random pattern generation [4,5]. In these approaches, the

probability of getting a 0 or a 1 at a particular input is biased

towards detecting random resistant faults. With weighted

random patterns, the difficulty that arises is that no one set

of weights may be suitable for all faults even in a

combinational circuit. In the case of sequential circuits, the

faults may need a biased internal state besides a biased input

vector. So, it is more difficult to obtain a good set of weights

at the primary inputs using only structural techniques. Static

compaction procedures extract a set of "necessary" vectors

from a given test set. Vector restoration techniques [6,7] aim

to restore sufficient vectors necessary to detect all faults.

Various methods to extend the compacted test set are given

in [8,9], including randomly picking a vector from the

compacted test set and holding it a given number of times,

perturbing a few bits in a randomly chosen vector and

holding it a given number of times, and copying over a

sequence of vectors to generate new vectors. In these

techniques, vectors are chosen randomly to extend the test

set. In [10], the authors present a technique to generate tests

for sequential circuits using weighted random vectors and a

static compaction procedure while in [11], the correlation

among test vectors was studied and this information was

used to generate test vectors.

 In our work, we would like to bias some "useful" vectors

by making sure that they have a higher probability of being

chosen. Thus, rather than having a purely uniform

distribution of vectors, we introduce some non-uniformity

into the process. Useful vectors are obtained using two broad

categories. These are: New-State vectors that drive the

sequential circuit into new states during successive

iterations, and New-Fault vectors that obtain new faults

during successive iterations. We show that with New State

vectors, we are able to visit a greater number of useful

(including previously unvisited) states in each iteration. This

leads to the detection of more hard-to-detect faults in each

iteration. So, we want to utilize and learn from the vectors

that lead to the detection of these new states. We use this

information obtained by analyzing the compacted set of

vectors to intelligently choose useful vectors such that fewer

vectors can achieve the same, or higher fault coverage in a

smaller amount of time.

2. Overview of the Test Generation
 Procedure

 Figure 1 presents an overall picture of the Test Generation

Procedure using vector compaction. The algorithm is given

below:

-Initialize iteration number i to 0
-Generate L random vectors to form a random input
 sequence S0

while (the terminating condition is not satisfied)
 -Fault simulate Si on the circuit under test
 -Apply static compaction on Si to obtain a
 compacted test sequence Sic
 -Extend the compacted sequence by generating
 vectors to form a suffix Sisu
 -Increment i for the next iteration

 There can be three possible terminating conditions. These

are: desired fault coverage is obtained, preset time for which

the experiments were conducted is reached, and number of

iterations of test set extension and compaction is reached.

We chose the number of iterations as the terminating

condition.

 This paper focuses on methods of extending the

compacted test set (i.e. obtaining suffix Sisu) by using New-

State Prefix Vectors, New-State Postfix Vectors, New-Fault

Vectors and Threshold-Fault Vectors.

3. Definitions

1) New-State Prefix Vectors: A sequence of "m" vectors

that lead to a newly visited state between consecutive

iterations of compaction and fault simulation is called

New-State Prefix (NSPR) Vectors. They are obtained as

follows: Identify the different states that a circuit is

driven into during two successive iterations. In iteration

i, the states that were reached in iteration i-1 are

compared with those that have been previously reached.

NSPR vectors are the sequence of "m" vectors that lead

to the new state. "m" is chosen to be the minimum

circuit depth, which is the minimum number of Flip

Flops on any path from a primary input to a primary

output. This information is recorded in the State Matrix.

2) New-State Postfix Vectors: A sequence of "n" vectors

that follow the vector that drives the circuit into a new

state in consecutive iterations is called New-State
Postfix (NSPO) Vectors. "n" is chosen to be 5. This

information is recorded in the State Matrix. Both NSPR

and NSPO vectors are shown in Figure 2.

3) New-Fault Vectors: A sequence of "m" vectors that

lead to the detection of a new fault between consecutive

iterations of compaction and fault simulation is called

New-Fault (N-F) Vectors. They are obtained as

follows: Identify the different faults that are detected

during two successive iterations. In iteration i, the faults

that were detected in iteration i-1 are compared with

those that have been detected previously. N-F vectors

are the sequence of "m" vectors that lead to the

detection of the new fault. As before, "m" is chosen to

be the minimum circuit depth. This information is

recorded in the Fault Matrix.

4) Threshold-Fault Vectors: Vectors detecting faults

equal to or greater than the threshold fault number are

identified, and a sequence of "m" vectors prior to each

of these vectors is called Threshold-Fault (T-F)
Vectors. They are obtained as follows: Identify the

number of faults detected by each vector. Set a

threshold number of faults. The sequence of "m-1"

vectors that occur prior to the vector that detects more

faults than the threshold value, and the vector under

consideration form the T-F vectors. As before, "m" is

chosen to be the minimum sequential depth. This

information is recorded in the Fault Number Matrix.

Both N-F and T-F vectors are shown in Figure 3.

Figure 1: Overview of Test Generation

:
:
:
:

“m” New -Fault (N-F)

Vectors

“m” Threshold -Fault

(T-F) Vectors

C
o
m

p
a
c
te

d
 te

st se
t

Vector at which a new

fault was detected

Vector which

detected > threshold

number of faults

:
:

Figure 3: New-Fault and Threshold-Fault Vectors

:
:
:
:

“m” New -State Prefix

(NSPR) Vectors

“n” New -State Postfix

(NSPO) Vectors

Figure 2: New-State Prefix and New-State
 Postfix Vectors

C
o
m

p
a
c
te

d
 te

st se
t

Vector at which the

circuit was driven into a

new state

Fault simulation based

 compaction

 Yes

 Stop

 Input Sequence

 Si

 Compacted Test

 Sequence Sic

 Sic +

 suffix Sisu

No
Termination

 Condition

 Satisfied ?

Figure 4: Reasons for biasing NSPR and NSPO
 vectors

 4. Test Generation Approach

 Since the NSPR vectors lead to the detection of new states

between consecutive iterations, they help span the state

space of the circuit. Let us consider a circuit for which we

have just visited a new state as depicted in Figure 4;

exploring neighboring states of this newly visited state may

help us in detecting faults that require one of these new

states as an intermediate state to excite the fault, or

propagate it to a primary output. As shown, there is a

sequence of vectors (Vseq) that takes us from a relatively well

explored state subspace, to a state that has not been

previously visited. There may exist other sequences that take

us back from this newly visited state to the previously

explored subspace. Since the newly visited state detected a

hard-to-detect fault, Vseq is a valuable sequence. We

postulate that the state subspace around this state might be

useful in detecting other previously undetected hard-to-

detect faults. To do so, whenever some sequence takes us

back to the previously explored state space, we would need

to get back to the new unexplored subspace. However, it is

not easy to do so, otherwise this region would have already

been explored earlier. We know that the vector sequence

Vseq had led us to the previously unvisited state earlier and

can do so again. So, we bias it with a higher priority by

choosing to bias the NSPR and NSPO as important vectors.

 Similarly, the N-F vectors lead to the detection of new

faults in consecutive iterations. This proves that they are

useful in detecting hard-to-detect faults, because they are

vectors that detect faults that could not be detected in earlier

iterations. The T-F vectors that detect a large number of

faults have already demonstrated their usefulness, so we use

them to extend the compacted test set. We believe that these

vectors, when compacted, might lead to the detection of

more faults in subsequent iterations.

Algorithms for our two techniques are described below:

Technique 1: Using NSPR and NSPO Vectors.

While (number of vectors less than cut-off)
 -Randomly pick a vector from the compacted
 test set, perturb a few bits in it and hold it a
 random number of times.
 -Copy over a sequence of five vectors from
 the compacted test set to generate new vectors.
 -Randomly pick an NSPR/NSPO vector
 from the State Matrix and copy over a
 sequence of "m" vectors prior to this vector
 and "n" vectors after this vector.
 -From the State Matrix information
 generated above, r andomly pick an
 NSPR/NSPO vector, perturb a few bits in it
 and hold it a random number of times.

Technique 2: Using N-F and T-F Vectors.

While (number of vectors less than cut-off)
 -Randomly pick a vector from the compacted
 test set, perturb a few bits in it and hold it a
 random number of times.
 -Copy over a sequence of five vectors from
 the compacted test set to generate new vectors.
 -From the Fault Matrix, randomly pick an
 N-F vector, perturb a few bits in it and hold
 it a random number of times.
 -Randomly pick an N-F vector from the
 Fault Matrix, and copy over a sequence of
 "m" vectors prior to this vector.
 -Randomly pick a T-F vector from the Fault
 Number Matrix, perturb a few bits in it and
 hold it a random number of times.

 -Randomly pick a T-F vector from the Fault
 Number Matrix, and copy over a sequence
 of "m" vectors prior to this vector.

 We choose the cut-off value, the number of bits perturbed

in a vector, and the number of times a vector is held in a

similar manner as [8]. The cut-off value is initially set to

2,000 vectors. If two consecutive sequences do not detect

any new faults, the cut-off is increased to the next higher

value. Possible values that can be assigned to cut-off are

5,000, 10,000, 20,000 and 40,000. The cut -off is never

increased beyond 40,000 because this would result in an

excessive time for fault simulation while the compaction

process occurs. Zero, one, two or three bits can be perturbed

with equal probability in a vector. A vector can be held for 2
i

time units, with a probability of 2
-(i+1)

 for 0 ≤ i ≤7, and 2
-8

 for

i = 8.

Total State Space

 Newly visited state

 Vseq

Vector Sequences

Previously visited state sub-space

Newly reached state

Unexplored subspace around newly reached stat

5. Results

 All experiments were conducted on an Ultra SPARC 10

with 256 MB of RAM for some ISCAS 89 and ITC 99

benchmark circuits.

 The fault simulator used in our experiments targets all the

faults in the circuit in each iteration. Other previously

reported techniques target 128 [8] and 256 [9] randomly

selected faults in the initial iterations, and gradually increase

the sample size until all the undetected faults are targeted in

later iterations. This leads to a disparity in the execution time

taken for fault simulation during compaction. To remove this

disparity and obtain a suitable platform for comparison, we

implemented the algorithm suggested by [8] and used our

fault simulator and compactor. As mentioned earlier, we

fixed an upper bound of 125 iterations as the terminating

condition.

 Before going into the detailed results of our experiments,

Figures 5, 6, 7 and 8 show the key idea of how the useful

new states obtained from biasing NSPR and NSPO vectors

can help in test generation. Figure 5 gives the total number

of states visited in s382 during the first ten iterations for our

technique using NSPR and NSPO vectors, versus the

number of states reached for our implementation of the

technique in [8]. Figure 6 shows the total number of faults

detected in the s382 in the corresponding iterations for both

techniques. For example, by iteration 2, our NSPR/NSPO

technique has visited 1147 states, while the original

implementation [8] visited 926 states. These 221 additional

states helped to detect 9 additional hard faults in that

iteration, as indicated in Figure 6. Consistently, our

technique visits a greater number of new states and detects

363 faults by the sixth iteration, while our implementation of

the technique in [8] required 10 iterations to reach the same

number of faults. Thus, we are able to detect faults faster.

 Likewise, Figure 7 gives the total number of states visited

in the b11 during the first ten iterations for our technique

using NSPR and NSPO vectors, versus the number of states

reached for our implementation of the technique in [8].

Figure 8 shows the total number of faults detected in the b11

in the corresponding iterations for both techniques. As seen

in these two figures, our technique visits a greater number of

new states and detects more faults in a lower number of

iterations when compared to our implementation of the

technique in [8].

 Figure 8: Total Faults detected for b11 Figure 7: Total States visited for b11

 Figure 5: Total States visited for s382 Figure 6: Total Faults detected for s382

b11

500

700

900

1100

1300

1500

1 2 3 4 5 6 7 8 9 10

Iteration

T
o

ta
l S

ta
te

s
re

ac
h

ed

Using NSPR and NSPO Vectors Using the technique in [8]

s382

500
700
900

1100
1300
1500
1700

1 2 3 4 5 6 7 8 9 10

Iteration

T
o

ta
l S

ta
te

s
vi

si
te

d

Using NSPR and NSPO vectors Using the technique in [8]

s382

335
340
345
350
355

360
365

1 2 3 4 5 6 7 8 9 10

Iteration

T
o

ta
l F

au
lt

s
d

et
ec

te
d

Using NSPR and NSPO vectors Using the technique in [8]

b11

700

750

800
850

900

950

1000

1 2 3 4 5 6 7 8 9 10

Iteration

T
o

ta
l F

au
lt

s
d

et
ec

te
d

Using NSPR and NSPO vectors Using the technique in [8]

 Going into detailed results, the results for the technique in

[9] are shown in Table 1, while the results for our

implementation of the technique in [8] are shown in Table 2.

In Table 1, column 1 gives the circuit name, while columns

2, 3 and 4 give the number of faults detected, test set size,

and the time taken to detect the indicated number of faults

respectively. For example, for s382, 364 faults were detected

with a test set size of 572. The time required was 0.46

minutes. In Table 2, columns 1 to 4 represent the same

parameters as Table 1. Column 5 gives the number of

iterations required to achieve the fault coverage. For

example, for s400, 382 faults were detected with a test set

size of 617 vectors. 6 minutes and 9 iterations were required.

 The results for our techniques are shown in Table 3.

Column 1 gives the circuit name, while columns 2, 3, 4 and

5 give the number of faults detected, test set size, the time

taken and number of iterations required to detect the

indicated number of faults respectively for the technique in

[8], columns 6, 7, 8 and 9 give these parameters for the

technique using NSPR and NSPO vectors to extend the

compacted test set, while columns 10, 11, 12 and 13 give

these parameters for the technique using N-F and T-F

vectors to extend the compacted test set.

 Comparing the results obtained in Tables 1 and 3, we can

see that for most circuits, our techniques require a smaller

test set size to achieve the same high fault coverage. For

example, in the technique using NSPR and NSPO vectors,

the number of vectors required is about 13% less for the

s526, about 16% less for the s1488, about 9% less for the

s1494, and about 5% less for the b11 when compared to the

method used in [9]. Comparing columns 3 and 7 of Table 3,

the number of vectors required by this technique is about

34% less for the b01and about 57% less for the b04. We are

also able to detect two more faults in the s400 and 393 more

faults in the b21, and obtain 51 more faults and use about

35% less vectors for the b12 in comparison with the method

used in [9].

 In the technique using N-F and T-F vectors to extend the

compacted test set, the number of vectors required is about

13% less for the s1494 when compared to the method used

in [9]. Comparing columns 3 and 11 of Table 3, the number

of vectors required by this technique is about 31% less for

the b04, and about 25% less for the b08. We are also able to

detect one more fault in the s400 and 180 additional faults

using 751 less vectors for b21 in comparison with the

method used in [9].

 A possible explanation of why the technique in [9]

requires fewer vectors than our techniques for certain

circuits is that we used a Linear Reverse Order Restoration

Algorithm mentioned in [8], but restored two vectors at a

time, while the technique in [9] uses a Radix Reverse Order

Restoration Algorithm.

 Comparing the iterations taken for our implementation of

the technique in [8] (Table 3, column 5), with the iterations

required for our NSPR and NSPO technique (Table 3,

column 9), we observe that the number of iterations required

to achieve the fault coverage is about 38% less for the s382,

about 68% less for the s526, about 59% less for the s1423

and about 80% less for the s1488 and s1494. Similarly, we

obtain major improvements in the number of iterations

required using N-F and T-F vectors (Table 3, column 13).

Thus, we not only obtain savings in the test set size, but also

need fewer iterations and less time to obtain the same high

fault coverage.

PREVIOUS METHOD [9]

Circuit

Det. Vec. Time
(min.)

s382

s400

s526

s713

s1196

s1238

s1423

s1488

s1494

s5378

b11

b12

b21

364

382

454

476

1239

1283

1416

1444

1453

3643

1004

1470

18023

572

677

1557

104

224

235

1049

426

454

672

419

3697

12651

0.46

0.65

2.64

0.13

0.4

0.44

8.84

1.93

2.2

35.55

1.59

27.49

135.72

 PREVIOUS METHOD [8]

Circuit

Det. Vec. Time
(min.)

Iter.

s382

s400

s526

s713

s1196

s1238

s1423

s1488

s1494

s5378

b01

b04

b08

b11

b12

b21

364

382

454

476

1239

1283

1416

1444

1453

3643

133

1168

463

1004

1470

18023

641

617

1854

205

241

334

1387

549

508

672

91

416

422

496

3697

14946

26

6

51

4

13

18

171

59

89

840

0.5

14

9

22

292

6910

21

9

47

10

47

46

87

79

73

117

5

18

19

33

66

51

Det. = Faults Detected Vec. = # Vectors in Test Set

Iter. = # Iterations required

Table 2: Implementation of the original algorithm
 in [8] without fault samples

Det. = Faults Detected

Vec. = # Vectors in Test Set

 Table 1: Results reported in [9]

 A) [8] without fault samples

B) Using NSPR and NSPO
vectors

C) Using N-F and T-F
Vectors

Circuit

Det. Vec. Time
(min.)

Iter. Det. Vec. Time
(min.)

Iter.

Det. Vec. Time
(min.)

Iter.

s382

s400

s526

s713

s1196

s1238

s1423

s1488

s1494

s5378

b01

b04

b08

b11

b12

b21

364

382

454

476

1239

1283

1416

1444

1453

3643

133

1168

463

1004

1470

18023

641

617

1854

205

241

334

1387

549

508

672

91

416

422

496

3697

14946

26

6

51

4

13

18

171

59

89

840

0.5

14

9

22

292

6910

21

9

47

10

47

46

87

79

73

117

5

18

19

33

66

51

364

384

454

476

1239

1283

1416

1444

1453

3643

133

1168

463

1004

1521

18416

897

807

1349

85

229

245

1209

360

417

1412

60

180

390

399

2418

16139

12

7

21

0.5

15

13

60

15

6

155

0.1

3

2

20

93

3662

13

7

15

4

48

43

36

16

15

28

5

10

11

28

31

22

364

383

454

476

1239

1283

1416

1444

1453

3643

133

1168

463

1004

1516

18203

764

766

1548

79

245

290

1249

430

393

889

82

289

316

461

2400

11900

4

3

18

1

7

6

47

9

8

148

0.2

5

3

10

55

3651

7

9

14

4

28

25

31

16

16

32

3

15

14

18

25

35

6. Conclusions

We have proposed a new and efficient technique for

extending the compacted test set, using information based

on new states reached during successive iterations, and

new faults detected between consecutive iterations. Our

results show that, as in previous methods, high fault

coverage was achieved. In some cases, we detected more

faults than have been previously reported. A significant

improvement in fault coverage for the b12 and b21 was

observed using both the NSPR/NSPO technique and the

N-F/T-F technique. At the same time, the number of

vectors required to achieve the high level of fault coverage

was fewer than other techniques required, while the

number of iterations needed, and the time taken was also

lower.

7. References

[1] V. D. Agrawal, “When to Use Random Testing”, IEEE Trans.

On Computers, vol C-27, No. 11, pp. 1054-1055, November

1978.

[2] M. Abramovici, M. A. Breuer and A. D. Friedman, "Digital

System Testing and Testable Design", New York, NY:

Computer Science Press, 1990.

[3] M. A. Breuer, "A Random and an Algorithmic Technique for

Fault Detection Test Generation for Sequential Circuits",

IEEE Trans. On Computers, vol C-20, No. 11, pp. 1364-

1370, November 1971.

[4] M. F. Alshaibi and C. R. Kime, "Fixed-biased pseudo-random

built in self test for random pattern resistant circuits", in Proc.

Intl. Test Conf., Oct. 1994, pp. 929-938.

[5] F. Muradali, T. Nishada, and T. Shimizu, "Structure and

technique for pseudo random-based testing of sequential

circuits", in Journal of Electronic Testing: Theory and

Applications (JETTA), Feb. 1995, pp. 6:107-115.

[6] I. Pomeranz and S. M. Reddy, "Vector restoration based static

compaction of test sequences for synchronous sequential

circuits", Proc. International Conference on Computer

Design, pp. 360-365, Oct. 1997.

[7] R. Guo, I. Pomeranz, and S. M. Reddy, "Procedures for static

compaction of test sequences for synchronous sequential

circuits based on vector restoration", Proc. Design,

Automation, and Test in Europe (DATE) Conf., pp. 583-587,

Feb. 1998.

[8] R. Guo, I. Pomeranz, and S. M. Reddy, “A fault simulation

based test pattern generator for synchronous sequential

circuits”, 17
th

 IEEE VLSI Test Symposium (VTS), pp. 260-

267, April 1999.

[9] R. Guo, S. M. Reddy and I. Pomeranz, “PROPTEST: A

Property Based Test Pattern Generator for Sequential Circuits

Using Test Compaction”, Proc. Design Automation

Conference (DAC), pp. 653-659, June 1999.

[10] A. Jain, V.D. Agrawal, M. S. Hsiao, "On generating tests for

 sequential circuits using static compaction", ITSW 1999,

 March 1999.

[11] A. Giani, S. Sheng, M. S. Hsiao, and V. D. Agrawal,

 "Correlation-Based Test Generation for Sequential Circuits",

 Proc. 9
th

 IEEE North Atlantic Test Workshop (NATW),

 pp. 76-83, May 2000.

Table 3: Results for: A) Algorithm in [8] without fault samples, B) NSPR and NSPO
 Vectors and C) N-F and T-F Vectors

 Det. = Faults Detected Vec. = # Vectors in Test Set. Iter. = # Iterations required

