
E�cient Scheduling Techniques for ROBDD Construction

Rajeev Murgai Jawahar Jain Masahiro Fujita

Fujitsu Laboratories of America, Inc., Sunnyvale, CA
fmurgai,jawahar,fujitag@fla.fujitsu.com

Abstract

The most common way to build the reduced ordered binary de-
cision diagram (ROBDD) of a complex gate (or function) f of a
network is bottom-up, i.e., by �rst building the ROBDDs of the
sub-expressions of f and then suitably combining them. Such a
method, however, has been found to su�er from memory explo-
sion, even when the ROBDD of f is not large. This leads to the
following fundamental question: Given an arbitrary boolean expres-
sion f(x1; x2; : : : ; xn) and the ROBDDs of xis (in terms of circuit
inputs), how should the ROBDD of f be constructed so that the
intermediate memory required to build the ROBDD is minimized,
and a heavy time penalty is not incurred? In this paper, we address
this question for a restricted f : a multi-way AND or OR operation.1

We propose various schemes for scheduling the binary operations of
the expression f . These schemes are based on an analysis of the
sizes and support-sets of the intermediate ROBDDs. One of our
main contributions is to prove that under certain conditions, these
schemes provide the optimum solution. We tested the proposed
schemes on complex functions present within ISCAS85 as well as
large industrial circuits. On average, our best scheme (which is
based on size as well as support-set of the component ROBDDs)
yields a 25% reduction in ROBDD sizes as compared to the tech-
nique implemented in sis [15]. In some cases, a reduction of up to
4 orders of magnitude was seen. Since ROBDDs are a key technol-
ogy in various synthesis and veri�cation tasks, our work can be of
immediate use in all these applications.

1 Introduction

Reduced Ordered Binary Decision Diagrams (ROBDDs) [3] are fre-
quently used in various combinatorial as well as CAD problems
such as synthesis, digital-system veri�cation, protocol validation
and testing [4]. Unfortunately, ROBDDs su�er from the mem-
ory explosion problem { in many cases, they just require too much
memory. There are two possibilities:
1. The �nal ROBDD is too large to �t in the main memory, or
2. the �nal ROBDD is reasonable, but some intermediate BDD is
too large.

The �rst case can arise for functions, such as multipliers [3],
where any ROBDD representation must require space which is ex-
ponential in the number of primary inputs (PIs). In such cases, a
monolithicROBDD representation is impractical and one may need
to switch to other representations, for example, gBDDs [2], IBDDs
[8], structural BDDs [11], or partitioned BDDs [9, 1], etc.

The second case can manifest itself in at least two ways, as dis-
cussed below. Suppose we want to build ROBDDs of the primary
outputs of a circuit that consists of complex gates. This is usu-
ally done bottom-up { starting from the primary inputs, visit the
gates in a topological order and build the ROBDD of a gate f ,
ROBDD(f), from the ROBDDs of its fanin gates, xis. This is

1One can buildROBDD of an arbitrary expressionby using these
two operations, along with inversion.

f

x1

x2

xn

Figure 1: Building ROBDD of a complex gate f in a

network

f

x1

x2

x3

x4

z

y9

y1

y0

Figure 2: An example network

shown in Figure 1. The triangle rooted at xi denotes ROBDD(xi).
Given a boolean expression for f (e.g., as a sum-of-products or a
factored form), ROBDD(f) is constructed by repeatedly invoking
the apply procedure [3] which carries out Boolean operations be-
tween di�erent ROBDDs as required. It can happen that ROBDDs
of the primary outputs have reasonable sizes, but ROBDD(f) does
not. The following example illustrates this.

Example 1.1 Consider the circuit of Figure 2. It has one primary
output z, ten primary inputs y0 through y9, and six intermediate
gates x1; x2; x3; x4; f , and z as follows:

x1 = (y1 y7 + y2 y4)(y6y8y9);
x2 = (y0y1y2 + y3y4)(y5y6y8y9);
x3 = y6y8y9;
x4 = y9 y8;
f = x1 + x2;
z = f + x3 + x4.
Suppose, we want to construct ROBDD(z) in terms of the pri-

mary inputs y0 through y9. Let us �x the ROBDD variable ordering

x1 x2

x3

x4

f

x4

f

x1 x3

x2

(A) (B)

+

+

+

+

+

+

Figure 3: Rescheduling the BDD construction

to y0 � y1 � : : : � y9. It can be veri�ed that under this variable
ordering ROBDD(x1) has 10 nodes, ROBDD(x2) 9, ROBDD(x3)
3, ROBDD(x4) 2, ROBDD(f) 20, and ROBDD(z) 3.2 Note that
actually z = (y8 + y4)y9.

This example showed that ROBDD for an intermediate gate (f)
can be much larger than that for the primary output (z). The
intermediate memory explosion problem can also arise while the
ROBDD of a complex intermediate function f is being built. The
last example, slightly modi�ed, illustrates this phenomenon.

Example 1.2 Suppose we have a 4-input OR gate f with in-
puts x1; x2; x3; x4 buried in a circuit whose primary inputs are y0
through y9. Let the functionality be as follows:

x1 = (y1 y7 + y2 y4)(y6y8y9);
x2 = (y0y1y2 + y3y4)(y5y6y8y9);
x3 = y6y8y9;
x4 = y9 y8;
f = x1 + x2 + x3 + x4.
Assume that for all xis, ROBDD(xi) have already been built.

Now we wish to construct ROBDD(f). The variable ordering is
the same as in Example 1.1. As mentioned earlier, an ROBDD
is typically constructed by using binary operations, say using the
apply procedure. Since f is a 4-input OR function of xis, the over-
all computation has to be split into binary computations. Consider
the following order of computations: (((x1 x2) x3) x4), as shown in
Figure 3 (A). This order implies that �rst ROBDD(x1+x2) should
be built, which should then be ORed with ROBDD(x3). Finally,
ROBDD(x1+x2+x3) should be ORed with ROBDD(x4) generating
ROBDD(f). It can be checked that ROBDD(x1+x2) has 20 nodes.
ROBDD((x1+x2)+x3) = ROBDD(y6y8y9) has 3 nodes. Finally,
ROBDD(f) also has 3 nodes, since f = (y8 + y4)y9. This is much
smaller than the largest intermediate ROBDD { ROBDD(x1+x2),
which has 20 nodes.

In literature, various techniques have been proposed to address
the memory explosion problem of ROBDDs.

1. Variable reordering: It is well-known that size of an
ROBDD is sensitive to the variable ordering [3]. If an ROBDD
becomes large, it may be possible to reduce its size by reorder-
ing variables. The main problem with this approach is that a
lot of CPU time may be spent in reordering.

2. Techniques based on decomposition: Here the restriction
of building a single monolithic representation for a function is
relaxed. One could build either a set of decomposed de-

cision diagrams, and then compose them back [10], or use

2We do not count the terminal 1 and 0 nodes in all cases.

alternate, space e�cient, BDD representations such as par-
titioned ROBDDs [9, 1]. For instance, in Example 1.2,
if after building ROBDD(x1 + x2) (which is represented in
terms of y0 through y9), one realizes that it is large (rela-
tively speaking), one can introduce decomposition points w1

and w2 at x1 and x2 respectively. w1 and w2 correspond to
new intermediatevariables. One can then build ROBDD(f) in
terms of w1; w2 , and other primary inputs y6; y8; y9, instead
of y0 through y9 . For instance, with the same schedule as
above, ROBDD(x1 + x2) is now built in terms of w1 and w2,
i.e., ROBDD(x1 + x2) = ROBDD(w1 + w2) has two nodes.
ROBDD((x1 + x2) + x3) = ROBDD(w1 + w2 + y6y8y9) has
5 nodes (assuming w1 ;w2 are placed at the end of the vari-
able ordering). Eventually, ROBDD(f) = ROBDD(w1+w2+
y9(y6+y8)) has 5 nodes. However, we also need ROBDD(w1)
= ROBDD(x1) and ROBDD(w2) = ROBDD(x2). This yields
a decomposed representation of f using three ROBDDs. Note
that we avoided buildingROBDD(x1+x2) { the 20-nodeBDD
{ in terms of primary inputs. Now, by composing BDDs of
w1; w2 in f , we can obtain the required canonical OBDD of
f in terms of primary input variables. Often such a decom-
position/composition based approach can avoid intermediate
peak explosion of BDD sizes [10]. Partitioned ROBDDs
try to solve the problem of memory explosion by partition-
ing the truth table of f into disjoint parts and then building
an ROBDD for each part separately. Di�erent variable order-
ings can be chosen for di�erent ROBDDs, further reducing the
ROBDD sizes.

In this paper, we attempt to reduce the intermediate memory
explosion by exploiting operator commutativity and asso-

ciativity.

Example 1.3 In Example 1.2, consider an alternate evaluation
schedule for f obtained by switching x2 and x3 in the schedule (A)
of Figure 3. The new schedule is (((x1 x3) x2) x4), as shown
in Figure 3 (B). x3 + x1 = y6y8y9, whose ROBDD has 3 nodes.
ROBDD((x3+ x1)+ x2) = ROBDD(y6y8y9) also has 3 nodes. Fi-
nally, ROBDD(f) has 3 nodes as well. The largest intermediate
ROBDD in this case is that of x3 + x1, requiring only 3 nodes, as
compared to 20 nodes for the �rst schedule. Even if we take into
account sizes of the ROBDD(xi), the largest ROBDD has 10 nodes
(for x1). Note that we used associativity and commutativity of the
OR operation as the basis for coming up with the schedule. Also, in
this example, the schedule was a simple chain: (((x1 x3) x2) x4).
In general, it could be a tree such as ((x2 x3) (x1 x4)).

This example illustrates that by altering the order of computa-
tion, it is possible to reduce sizes of the intermediate ROBDDs.
Such a possibility of being able to reduce the intermediate ROBDD
sizes in apply-based BDD construction/manipulation is prevalent
in almost all ROBDD-based applications. Upon inquiry we found
that in several ROBDD-based packages available in academia as
well as in industry, explosion in the intermediate sizes has not been
adequately addressed. Thus, a reasonable solution to this problem
will be a quite useful contribution.

We address the following problem in the paper:
Given a set of ROBDDs to be ANDed (ORed) two at a time,

compute an appropriate schedule of the binary AND (OR) opera-
tions such that the maximum (or sum of) intermediate ROBDD
size(s) is minimized. Further, determining the schedule itself
should not cause a signi�cant time penalty.

We propose various scheduling schemes and prove that under
certain situations, they generate optimum schedules.

For an arbitrary intermediate function f in a network, we will
apply our schemes as follows:

1. Starting with a sum-of-products representation of f , deter-
mine a good schedule for each product term,

2. use these schedules to build ROBDD for each product term,
using apply for each binary AND,

3. determine a good schedule for the �nal sum term, and

4. build the ROBDD of f using the schedule for the sum term.

This is how ROBDDs are built for complex functions, for in-
stance, in sis [15]. However, sis does not address the problem of
generating good schedules for the AND and the OR operations to
minimize the intermediateROBDD sizes; it arbitrarily uses a chain-
like schedule determined by the serial order in which literals appear
in the input �le of the design.

The paper is organized as follows. In Section 2, we briey re-
view related work on scheduling. In Section 3 we propose various
scheduling schemes. Section 4 provides experimental results on var-
ious benchmarks. We provide concluding remarks in Section 5.

2 Related Work

[5] and [12] recognizedROBDD-scheduling as an important problem
in the context of reachability computation using partitioned transi-
tion relations. They schedule ROBDDs based on common variables
in their support sets. Given a setB of ROBDDs, B = fB1; : : : ; Bkg,
the members of B are arranged greedily such that each succes-
sive member has maximum support common with the preceding
ROBDD. Some variants of this heuristic were discussed in [5]. As
we will show in Section 4, such approaches can be improved.

We are also aware of the works by Shiple [16] and Hett et al. [6],
which instead of multiple invocations of binary apply , use a gener-
alized multi-way apply to build an ROBDD. In our work, however,
we will focus on using binary apply as the building block, since it is
the technology in almost all ROBDD packages. Also, some of these
methods such as [16] su�er from enormous run-times and are not
practical.

3 Proposed Scheduling Schemes

Assume f = x1 � x2 � : : : � xn, where � = AND or OR. Let
bi = ROBDD(xi), and S = fb1; b2 ; : : : ; bng. We wish to compute
ROBDD(f) by �ing ROBDDs in S, two at a time.

We investigate various schemes for scheduling the � opera-
tions. All the schemes are greedy in that at each step, they select
two ROBDDs Bi and Bj from S such that the resulting ROBDD

B(i; j) = Bi�Bj is small. Bi and Bj are then deleted from S and
B(i; j) is added to S. This step is repeated until jSj = 1.

3.1 Size-based Analysis

Given a pair of ROBDDs Bi;Bj , and a Boolean operation �, it is
well-known that the worst-case size of the resulting ROBDD Bi �
Bj is O(jBijjBjj) [3]. Based on this observation, we propose the
heuristic min-size, which selects two smallest ROBDDs Bi and Bj

at each step, with the hope that the resulting ROBDD will be small
as well.

As the following theorem shows, min-size can be optimum in
certain situations. For this theorem, the optimum order is de�ned
to be the one that minimizes the sum of the intermediate ROBDD
sizes.

Theorem 3.1 Given an initial set S of ROBDDs, S =
fb1; b2; : : : bng, such that any two ROBDDs Bi and Bj derived from
ROBDDs in S by a sequence of � operations obey

jBi �Bjj = jBij+ jBj j; (1)

min-size (i.e., �ing two minimum-sized ROBDDs at each step)
yields an optimum schedule for computing f , the cost function being
the sum of the sizes of the intermediate ROBDDs.

Proof A schedule corresponds to a weighted binary tree,
whose leaves are original ROBDDs b1; b2; : : : ; bn, with weights
jb1j; jb2j; : : : ; jbnj respectively. Performing � operation on two
ROBDDs Bi and Bj generates a tree node V (i; j), which corre-
sponds to the resulting ROBDD B(i; j). The weight associatedwith
V (i; j) is jB(i; j)j = jBij+ jBj j (from (1)), the sum of the sizes of
the children ROBDDs. The sum of the intermediateROBDD sizes is
then the sum of the weights of the (non-leaf) tree nodes. By Hu�-
man's Theorem [7], this sum is minimized in a tree which is obtained
by combining two smallest-weight nodes at each step. This is the
same as the strategy in min-size.

The theorem shows that the optimum schedule for well-behaved
ROBDDs is to evaluate them in increasing size. Interestingly, if we
change the optimality criterion from minimizing the sum of the in-
termediate ROBDD sizes to minimizing the maximum intermediate
ROBDD size, the problem becomes NP-hard, even for well-behaved
ROBDDs.

Theorem 3.2 Given an initial set S of ROBDDs, S =
fb1; b2 ; : : : bng, such that any two ROBDDs Bi and Bj derived from
ROBDDs in S by a sequence of � operations obey

jBi �Bj j = jBij+ jBjj; (2)

�nding a schedule that minimizes the maximum intermediate
ROBDD size is NP-hard.

Proof Note that size of an ROBDD at any node in the scheduling
tree is sum of the weights jbij of the leaf-nodes in th sub-tree rooted
at that node. Given (2), the maximum intermediate ROBDD size
would be that of one of the children c1 or c2 of the root of the com-
plete tree. Since minimizing the larger of c1 and c2 is equivalent to
minimizing the di�erence between jROBDD(c1)j and jROBDD(c2)j,
the problem becomes that of partitioning the weights bis into two
disjoint sets such that the di�erence in the sum of the weights of
the two is minimized. This can be restated as the MINIMUM DIF-
FERENCE problem:

INSTANCE: Finite set B, a weight s(b) 2 Z+ for each b 2 B, and
K.
QUESTION: Is there a subset eB � B such that

j
X
b2eB

s(b)�
X

b2B�eB
s(b)j � K (3)

We prove that MINIMUM DIFFERENCE is NP-complete by
transforming the NP-complete problem PARTITION to it. Con-
sider PARTITION:

INSTANCE: Finite set B and a weight s(b) 2 Z+ for each b 2 B.

QUESTION: Is there a subset eB � B such thatX
b2eB

s(b) =
X

b2B�eB
s(b) (4)

Clearly, MINIMUM DIFFERENCE is NP-complete, since for K
= 0, it reduces to PARTITION.

3.2 Support-based Analysis

Under certain situations, scheduling ROBDDs based only on sizes
is not su�cient. It can happen that the two smallest ROBDDs
Bi and Bj are such that jBi � Bj j = jBijjBjj. Instead had we
chosenROBDDsB` andBm that are slightly larger but have disjoint
support sets, we could have obtained a much smaller intermediate
ROBDD, with size jB`j+ jBmj. The following theorem makes this
precise. Let sup(b) denotes the support set of ROBDD b.

Theorem 3.3 [13] Given ROBDDs B` and Bm such that
sup(B`) \ sup(Bm) = �. Also, assume that the variable order-
ing � is such that the �rst jsup(B`)j positions in � are occupied by
the variables of B`. Then, ROBDD B` � Bm can be obtained by
just appropriately concatenating the ROBDDs B` and Bm.

This theorem underscores the importance of a support-based anal-
ysis. The simplest support-based heuristic, min-support, ignores
sizes completely and at each step selects two ROBDDs that have
minimum supports. This is similar to the support-based heuris-
tics of [5, 12], in which the �rst ROBDD is the minimum-support
ROBDD, and the second ROBDD is the one that introduces fewest
extra variables after the operation is carried out. We call this
scheme support extra-support, since the �rst ROBDD (Bi) has
minimum support and the second ROBDD (Bj) has, among all the
remaining ROBDDs, the minimum extra support from Bi. Extra
support is the number of additional variables introduced in the
support of B(i; j) = Bi � Bj as compared to Bi. It is equal to
jsup(Bj)� sup(Bi)j.

3.3 Size- and Support-based Analysis

We now present a scenario in which both size and support-set are
needed for an optimum schedule (here also, the optimum schedule
is the one that minimizes the sum of the sizes of the intermediate
ROBDDs). If a set of ROBDDs can be partitioned into subsets of
disjoint support-set ROBDDs, and the ROBDDs within each sub-
set obey a certain cost function during�ing, the following theorem
states that the optimum schedule is to evaluate the ROBDDs within
each subset using min-size and then apply min-size on the result-
ing disjoint support-set ROBDDs.

Theorem 3.4 Consider a set of ROBDDs S = fb1; b2 : : : ; bng such
that

1. either sup(bi) = sup(bj) or sup(bi) \ sup(bj) = � for all i; j.

2. whenever sup(bi) = sup(bj),

jbi � bj j = minfjbij; jbjjg (5)

Moreover, (5) holds for any two ROBDDs derived from same-
support ROBDDs of S.

Let m be the total number of distinct ROBDD support sets in S.
So S can be partitioned into sets S1; S2; : : : ; Sm, where ROBDDs in
a set Si have identical supports and a ROBDD in Si has disjoint
support with any ROBDD in Sj ; j 6= i. Let Bi be the ROBDD

obtained after �ing all the ROBDDs in Si. Then, given that for
each i variables of Si are contiguous in the global ROBDD variable
ordering, an optimum schedule for computing b1 � b2 � : : : bn is to
evaluate each Si using min-size to get Bi, and then apply min-size

on fB1;B2; : : : ; Bmg.

Proof Omitted due to lack of space. Please see [14].
This theorem used both size and support-set information to de-

rive the optimum schedule. The natural step therefore is to propose
a scheme that combines both size and support-set information. In
fact, we propose various such schemes. The �rst ROBDD Bi is
always the minimum-sized ROBDD.

1. size common-support: The second ROBDD Bj is the one that
shares maximum support with Bi.

2. size extra-support: Bj is the one that has minimum extra
support with respect to Bi.

3. size support: To decide on Bj, we rank separately the re-
maining ROBDDs of the set S by size and extra support in
Lsize and Lsup. ROBDDs with minimum rank (size or extra
support) are earlier in the lists. Then, we pick a very small
number of ROBDDs (such as 2) from the head of Lsize and
Lsup. We perform an explicit AND operation of each of these
ROBDDs with Bi. The ROBDD that results in the smallest
size is the desired Bj .

3.4 Partial Traversal

Given ROBDDs Bi and Bj, this method estimates the size W (i; j)
of the resulting ROBDD B(i; j) by exploring each ROBDD partially.
ForBi, all possible paths p of length up to k (where k is a small con-
stant) starting at the root of Bi are traversed. Assume that a path
p ends at vertex vi. vi may be terminal (0 or 1) or non-terminal. Bj

is also traversed for this path p. Let the vertex reached at the end
of path p in Bj be vj (a terminal vertex may be reached before p is
completely traversed, in which case we stop at the terminal vertex).
This corresponds to taking cofactor of Bj with respect to the cube
corresponding to p. Let jvij denote the size of the ROBDD rooted
at vi. We initialize W (i; j) = 0. We have the following cases:

� vi = 0: do nothing.

� vi = 1: if vj is non-terminal,W (i; j) = W (i; j) + jvjj.

� otherwise (vi is non-terminal): if vj is non-zero, W (i; j) =
W (i; j) + jvij � jvjj.

We repeat this analysis for all paths p in Bi of length at most k.
This analysis is done for all pairs (Bi; Bj) and W (i; j) is com-

puted. Finally, choose Bi and Bj such that W (i; j) is minimized.
The partial-traversalheuristic attempts to do a more accurate

size estimation than is possible with min-size. For instance, if a
path p inBi ends at vi = 0, the correspondingvertex in the resulting
ROBDD B(i; j) will be 0, irrespective of the kind of vertex vj in Bj.
Thus, the contribution of such a path to the size is 0. If there are
many paths in the top part of Bi or Bj ending in 0, B(i; j) will
be small. partial-traversal examines the relationship between
corresponding paths in Bi and Bj; such a functional analysis is not
possible in min-size. Interestingly, partial-traversal reduces to
min-size for k = 0.

However, partial-traversalhas the following drawbacks. First,
it does not consider size of B(i; j) for the �rst k levels. W (i; j) is
an estimate of B(i; j) below k levels. This is reasonable only if k
is small. Secondly, when computing W (i; j), partial-traversal
does not take into account possible node sharing between ROBDDs
rooted at vi and vj. Thus, it overestimates the size ofB(i; j) (below
k levels). Also, if the number of ROBDDs to be ANDed, n, is large,
such an analysis can be computationally expensive (the complexity
is O(n22k)). So, in our implementation, at each step, we �x Bi to
be the minimum-sized ROBDD. Bj is then determined by carrying
out the foregoing analysis for the remaining ROBDDs. This reduces
the run-time by about a factor of 2.

4 Experimental Results

In the following we analyze the experimental performance of our
scheduling algorithm, and prove that they can indeed make signi�-
cant improvements to the state of the art methods.

Experimental Setup: The proposed scheduling computation al-
gorithms of Section 3 have been implementedwithin sis [15] environ-
ment. Our test circuits include ISCAS85 combinational benchmark
circuits as well as the combinational parts of various designs from
Fujitsu such as data transfer bu�ers and a controller for a paral-
lel processor. Our experiments were carried out on a Sun SPARC
20 with 512 MBytes of RAM and more than 2GB swap space. The
run-times are reported in seconds. The goal is to build the ROBDDs
for these circuits. Each node of the circuit can have arbitrary logic
function associated with it. The ROBDDs are built topologically
from inputs to outputs. Therefore, at any node, the ROBDDs for
the fanins of the node have already been built. Each benchmark is
pre-processed such that each node is either an AND or an OR, with
unbounded number of inputs. Note, if we use dynamic reordering
then the �nal ROBDD need not have the same variable order as
all the intermediate BDDs. Since time required in reordering is
directly proportional to the size of graphs, thus for simplicity as
well as for giving only a conservative estimate of the bene�ts of our

techniques, we will ignore the e�ect of reordering the intermediate
graphs.

Description of Tables: Table 1 lists sum of the sizes of the in-
termediate ROBDDs generated by various scheduling schemes for
interesting nodes of each benchmark. We say a node is interesting
if its ROBDD has at least 1000 nodes.3 The sum of the intermediate
ROBDD sizes is a useful metric since it captures di�erent interme-
diate ROBDD sizes in a single number, and is also a measure of
the total time taken in building the �nal ROBDD. Table 2 lists the
maximum ROBDD size during scheduling and compares it with the
�nal ROBDD size for the node.

The algorithm currently implemented in sis to build the net-
work ROBDD, to be called sis from now on, constructs the prod-
uct and sum ROBDDs in a serial order, determined by how the
literals appear in the input �le. We do not report the results
for size common-support, since they were not much di�erent from
size extra-support. For partial-traversal, k was set to 5. Also,
heuristic names have been shortened in the tables. For instance,
size-esup is the same as size extra-support.

Each row in the table corresponds to an interesting node of the
benchmark, and contains the following information: name of the
benchmark, the type of node { AND or OR, the number of im-
mediate fanins, and the sum of the sizes of intermediate ROBDDs
(including the �nal ROBDD for the node) for various scheduling
schemes. In each row, the minimum sum is highlighted in bold.
The row total summarizes the performance of each scheme vis-a-vis
sis. It shows average relative sum of the intermediate ROBDD sizes
for each scheme with respect to that of sis.

Analysis of Table 1: It can be safely concluded that size support

is the best heuristic; it is about 25% better than sis in terms of the
ROBDD size sum. Also, it gives the minimum sum 29 times out of
35. For the 4th node of C3540 (a 4-input AND gate), size support

is more economical than all other scheduling schemes by a factor of
two. min-size is the next best { it is about 20% better than sis and
gives minimum sum 15 times. Disappointingly, the most elegant
scheme, partial-traversal, does not live up to its expectations.
Also, sis is the worst of them all. That is as expected, since sis

processes literals in the product and sum terms in the same order
as typed in the input blif �le, and this order may not be good at
all.

Analysis of Table 2: In comparing the maximum ROBDD size
during scheduling with the �nal ROBDD size for the node, we again
�nd that size support o�ers the best performance. In some exam-
ples, such as the second node of C1355 and the last node of C432,
the intermediate ROBDD size in sis is almost twice the �nal size,
whereas other schemes avoid this explosion.

We noticed that on certain logic functions in the industrial
benchmark ut (Figure 4), size support and other scheduling
schemes yield an improvement of as much as 3 to 4 orders of
magnitude over the sis heuristic in the intermediate size. Since
support extra-support is essentially the technique proposed by
[5, 12], our results demonstrate that it is possible to do much bet-
ter than a purely support-based scheme. In general, support-based
heuristics min-support and support extra-supportdo not perform
well. Although there are instances where they outperform others,
there are far more instances where they end up at the bottom. In
fact, as we can notice in Figure 5, which lists intermediate sizes of
the ROBDDs for each scheduling scheme for two interesting cases of
circuit mswcn, such schemes can be impractical for many real-life
circuits.

Run-time Performance: The run-times of various heuristics are
given in Table 3. sis takes long time to create ROBDDs, since
the intermediate sizes can be huge, and operating on them can be
costly. Clearly, size extra-support is the fastest, closely followed

3This �lter reduces the amount of information analyzed.

min−size
sis

min−sup

size−esup

sup−esup

part−trav

size−sup

6

0.00

0.50

1.00

1.50

2.00

2.50

3.00

10.00 20.00 30.00 40.000.00
 #OR
operations

|BDD| x 10

Figure 4: Interesting case in ut: a 41-input OR gate.

Note that except sis, most scheduling algorithms had an

identical performance.

by min-size. partial-traversal is the slowest, which is under-
standable, since it is traversing the ROBDDs up to k levels. It is
quite slow on C5315 and C2670, but on the rest, takes time com-
parable to sis. size support is overall a little faster than sis, but is
about twice as slow as min-support and min-size. However, since
in terms of solution quality size support is much better than other
schemes, the hit in run-time should be acceptable.

5 Conclusions

In this paper, we addressed the following problem: given a multi-
input AND (also OR) function f(x1; x2; : : : ; xn) and ROBDDs of
xis (in terms of circuit inputs), construct ROBDD of f using bi-
nary AND (or OR) as the basic operation such that the intermediate
memory requirements are minimized and a heavy time penalty is
not incurred. We proposed various schemes for scheduling the bi-
nary operations. The best scheme was found to be the one based
on an analysis of both sizes and support-sets of the intermediate
ROBDDs. One of our main contributions was to prove that under
certain conditions, these schemes provide the optimum solution. We
proposed a simple method to use these schemes for building ROB-
DDs of arbitrary functions. We also presented experimental results
for complex functions present within ISCAS85 as well as large in-
dustrial circuits. On average, a 25% reduction in ROBDD sizes was
obtained over the technique implemented in sis [15]. In some cases,
a reduction of up to 4 orders of magnitude was seen. Our future
work on scheduling can address two interesting problems.

1. Our schemes can also be applied to the general network
scheduling problem. To build the ROBDDs for the outputs
of a network, ROBDDs of the intermediate gates need to be
built. In what order should these gates be traversed? Al-
though many topological orderings are possible, we would like
to pick one that minimizes intermediate memory. An impor-
tant related problem is that of restructuring the network so
that intermediate memory can be minimized. For instance, if
the network contains a sub-network consisting only of 2-input
AND gates, the sub-network can be collapsed into one single

Bench type inputs sis min-size min-sup size-esup sup-esup part-trav size-sup

C5315 OR 6 14549 14549 11096 14700 11096 14549 14549

C5315 OR 4 15655 6054 6054 6054 6054 6054 6054

C5315 OR 16 83987 44204 44543 44156 44156 44192 44172

C3540 AND 5 16363 7767 7767 7767 7767 7842 7767

C3540 AND 5 11233 11233 9947 9947 9947 11233 9799

C3540 OR 15 130149 57373 57343 53877 57476 57623 48792

C3540 AND 4 3091 3091 2846 3329 2846 3091 1501

C3540 AND 3 5113 5113 6195 6655 6195 5113 5113

C3540 AND 5 4187 4187 4657 4218 4381 4187 4218

C3540 AND 4 3623 3623 3482 3130 3482 3623 3130

C3540 OR 9 9143 7693 9536 7497 7565 9143 7186

C3540 AND 4 28946 25319 27421 26637 26637 28946 25319

C3540 OR 6 49354 40158 51056 40840 45639 49354 40158

C3540 OR 7 47067 34565 40148 35837 35300 47067 34418

C3540 AND 3 19029 16623 19029 16623 16623 19029 16623

C3540 OR 5 37770 27462 33288 27462 34934 37770 27351

C3540 OR 8 60677 46606 82700 47430 65008 65100 46606

C3540 AND 3 3137 3137 5170 5170 5170 3137 3137

C2670 OR 16 17698341 6817897 8584118 7936566 8584118 8410650 6843633

C1908 OR 5 6249 2715 2715 2927 2990 3418 2715

C1908 AND 10 9568 9568 7612 7612 7612 9568 6225

C1908 OR 4 5367 3863 3863 5367 5367 3863 3863

C1355 OR 3 6264 5034 5034 5034 5034 5034 5014

C1355 OR 3 7446 5018 5018 5018 5018 5018 4996

C432 OR 13 24119 18329 21725 21442 19219 24119 16333

C432 OR 13 10382 10357 11602 10317 11571 10382 10331

C432 AND 9 7408 7518 12262 8190 12142 7408 7368

C432 OR 11 49331 55298 50740 45190 45305 49331 42906

C432 OR 14 76664 79212 110630 86751 110630 76664 67653

C432 AND 4 8726 8726 13547 10958 13547 8726 8726

C432 OR 7 42541 15149 15149 15149 15149 13921 8511

mswcn AND 4 786469 786469 1048538 1048538 1048538 786469 786469

mswcn AND 4 2097198 2097198 3014593 3014593 3014593 2097198 2097198

mswcn AND 4 5005951 5005951 4842035 4842035 4842035 5005951 5005951

ut OR 41 9437157 3173571 3173749 3159986 3159986 3173485 3159568

total 100.0 80.3 92.8 86.3 90.5 85.1 74.8

Table 1: Comparison of various schemes { sum of ROBDD sizes

Bench type �nal size sis min-size min-sup size-esup sup-esup part-trav size-sup

C5315 OR 4964 7718 7718 4964 7882 4964 7718 7718

C5315 OR 5693 5693 5693 5693 5693 5693 5693 5693

C5315 OR 5697 5697 5697 5697 5697 5697 5697 5697

C3540 AND 6180 6180 6180 6180 6180 6180 6180 6180

C3540 AND 3523 3825 3825 3671 3671 3671 3825 3523

C3540 OR 10349 10349 10349 10349 10349 10349 10349 10349

C3540 AND 1055 1748 1748 1055 1344 1055 1748 1055

C3540 AND 3817 3817 3817 3817 3817 3817 3817 3817

C3540 AND 1258 1810 1810 1307 1396 1258 1810 1396

C3540 AND 1556 1810 1810 1556 1556 1556 1810 1556

C3540 OR 1223 2060 1223 2170 1272 1374 2060 1223

C3540 AND 8621 11512 8813 11512 10131 10131 11512 8813

C3540 OR 9600 10930 9600 14431 10210 14311 10930 9600

C3540 OR 11313 11570 11570 16519 12107 11570 11570 11423

C3540 AND 8636 10393 8636 10393 8636 8636 10393 8636

C3540 OR 8612 10921 8612 11784 8612 15963 10921 8612

C3540 OR 13886 13886 13886 23340 13886 18314 17779 13886

C3540 AND 2374 2374 2374 2796 2796 2796 2374 2374

C2670 OR 2346311 2346311 2346311 2346311 2346311 2346311 2346311 2346311

C1908 OR 1201 1916 1201 1201 1397 1460 1244 1201

C1908 AND 2013 2013 2013 2013 2013 2013 2013 2013

C1908 OR 1922 3425 1922 1922 3425 3425 1922 1922

C1355 OR 2507 3757 2527 2527 2527 2527 2527 2507

C1355 OR 2506 4940 2512 2512 2512 2512 2512 2506

C432 OR 3600 3848 3600 3600 3600 3600 3848 3600

C432 OR 2979 2979 2979 3606 2979 3606 2979 2979

C432 AND 2139 2139 2139 3928 2139 3621 2139 2139

C432 OR 7688 7688 9837 7688 7688 7688 7688 7688

C432 OR 7349 9389 10060 10120 10308 10120 9389 7811

C432 AND 3098 3406 3406 6327 4122 6327 3406 3406

C432 OR 4147 8809 4147 4147 4147 4147 4147 4147

mswcn AND 786391 786391 786391 786391 786391 786391 786391 786391

mswcn AND 2097092 2097092 2097092 2097092 2097092 2097092 2097092 2097092

mswcn AND 3957343 3957343 3957343 3957343 3957343 3957343 3957343 3957343

ut OR 3145727 3145727 3145728 3145728 3145728 3145728 3145728 3145728

Table 2: Comparison of various schemes { max ROBDD size

Benchmark sis min-size size-esup sup-esup min-sup part-trav size-sup

C5315 53.16 16.06 13.18 21.17 17.22 265.5 35.89

C3540 155.05 100.59 94.17 107.65 130.07 120.32 172.61

C2670 823.62 453.73 355.44 609.16 599.83 2337.46 899.25

C1908 76.26 8.42 6.74 11.77 8.74 59.64 13.89

C1355 34.07 12.97 10.67 19.58 11.74 58.26 16.73

C432 61.56 24.19 19.73 43.75 31.69 47.46 61.65

Table 3: Run-time comparison of various heuristics

++

/* min-sup, sup-esup, size-esup are the worst */

sis AND 12 94 2097092

min-size AND 12 94 2097092

min-sup AND 12 917489 2097092

size-esup AND 12 917489 2097092

sup-esup AND 12 917489 2097092

part-trav AND 12 94 2097092

size-sup AND 12 94 2097092

++

/* min-sup, sup-esup, size-esup are the worst */

sis AND 77 1048531 3957343

min-size AND 77 1048531 3957343

min-sup AND 360444 524248 3957343

size-esup AND 360444 524248 3957343

sup-esup AND 360444 524248 3957343

part-trav AND 77 1048531 3957343

size-sup AND 77 1048531 3957343

++

Figure 5: Interesting cases for mswcn

multi-inputAND gate, which can then be scheduled using our
schemes.

2. Scheduling is a central issue in computing the order in
which partitioned transition relations should be ANDed dur-
ing reachability analysis of a �nite state machine. Previously,
researchers have used support-set based analysis [5, 12]. Since
our scheduling algorithm is superior than support-set based
analysis, we can apply our techniques to schedule partitioned
transition relations.

References

[1] A. Narayan, S. P. Khatri, J. Jain, M. Fujita, R. K. Bray-
ton, and A. Sangiovanni-Vincentelli. A Study of Composi-
tion Schemes for Mixed Apply/Compose Based Construction
of ROBDDs. In Proc. of the Intl. Conf. on VLSI Design, 1996.

[2] P. Ashar, S. Devadas, and A. Ghosh. Boolean Satis�ability
and Equivalence Checking Using General Binary Decision Di-
agrams. In Proceedings of the International Conference on
Computer Design, pages 259{264, October 1991.

[3] R. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers, C-35:677{691,
August 1986.

[4] R. Bryant. Symbolic Boolean ManipulationWith Ordered Bi-
nary Decision Diagrams. ACM Computing Surveys, 24::293{
318, September 1992.

[5] D. Geist et al. E�cient Model Checking by Automated Order-
ing of Transition Relation Partitions. In CAV, 1994.

[6] A. Hett, R. Drechsler, and B. Becker. MORE: An Alternative
Implementation of BDD Packages by Multi-Operand Synthe-
sis. In Proceedings of the European Design Automation Con-
ference, pages 164{169, 1996.

[7] D. A. Hu�man. A method for the construction of minimum
redundancy codes. In Proceedings of the IRE, volume 40, pages
1098{1101, September 1952.

[8] J. Jain, M. Abadir, J. Bitner, D. S. Fussell, and J. A. Abra-
ham. Indexed BDDs: Algorithmic advances in techniques to

represent and verify Boolean functions. IEEE Trans. Comp.,
November 1997.

[9] J. Jain, J. Bitner, D. Fussell, and J. Abraham. Functional Par-
titioning for Veri�cation and Related Problems. In Proceedings
of the Brown/MIT Conference on Advanced Research in VLSI
and Parallel Systems, pages 210{226, March 1992.

[10] J. Jain, A. Narayan, C. Coelho, S. Khatri, A. Sangiovanni-
Vincentelli, R. Brayton, and M. Fujita. Decomposition Tech-
niques for E�cient ROBDD Construction. In Formal Methods
in CAD 96, LNCS. Springer-Verlag, 1996.

[11] S-W. Jeong, B. Plessier, G. Hachtel, and F. Somenzi. Ex-
tended BDDs: Trading O� Canonicity for Structure in Veri�-
cation Algorithms. In Proceedings of the Int'l Conference on
Computer-Aided Design, pages 464{467, November 1991.

[12] S. Krishnan and R. Hojati. Early Quanti�cation and Parti-
tioned Transition Relations. In Proceedings of the Interna-
tional Conference on Computer Design, 1996.

[13] S. Malik, A. R. Wang, R. Brayton, and A. Sangiovanni-
Vincentelli. Logic Veri�cation using Binary Decision Diagrams
in a Logic Synthesis Environment. In Proceedings of the Int'l
Conference on Computer-Aided Design, pages 6{9, November
1988.

[14] R. Murgai, J. Jain, and M. Fujita. E�cient Scheduling Tech-
niques for ROBDD Construction. In Fujitsu Labs of America
Internal Report, 1997.

[15] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton,
and A. Sangiovanni-Vincentelli. SIS: A System for Sequen-
tial Circuit Synthesis. Memorandum No. UCB/ERL M92/41,
Electronics Research Laboratory, College of Engineering, Uni-
versity of California, Berkeley, CA 94720, May 1992.

[16] T. Shiple, B. Brayton, and A.S. Vincentelli. Computing
Boolean Expressions with OBDDs. In UCB/ERL M93/84 In-
ternal Report, University of California, Berkeley, 1993.

