
To appear in ACM Trans. Design Automation of Electronic Systems

rrors
s pre-
design
class
mon
els is
ingle

y will
cropro-
an be

vot-
ifica-
nu-
olo-
) the
High-Level Design Verification of
Microprocessors via Error Modeling

DAVID VAN CAMPENHOUT, HUSSAIN AL-ASAAD,
JOHN P. HAYES, TREVOR MUDGE, and RICHARD B. BROWN
University of Michigan, Ann Arbor, Michigan

A design verification methodology for microprocessor hardware based on modeling design e
and generating simulation vectors for the modeled errors via physical fault testing techniques i
sented. We have systematically collected design error data from a number of microprocessor
projects. The error data is used to derive error models suitable for design verification testing. A
of basic error models is identified and shown to yield tests that provide good coverage of com
error types. To improve coverage for more complex errors, a new class of conditional error mod
introduced. An experiment to evaluate the effectiveness of our methodology is presented. S
actual design errors are injected into a correct design, and it is determined if the methodolog
generate a test that detects the actual errors. The experiment has been conducted for two mi
cessor designs and the results indicate that very high coverage of actual design errors c
obtained with test sets that are complete for a small number of synthetic error models.

Categories and Subject Descriptors: B.0 [Hardware] General —Design Aids;B.5.2 [Hardware]
Register-transfer-level implementation —Design Aids.

General Terms: Verification, microprocessors.

Additional Key Words and Phrases: Design verification, design errors, error modeling.

1. INTRODUCTION

It is well known that about a third of the cost of developing a new microprocessor is de
ed to hardware debugging and testing [25]. The inadequacy of existing hardware ver
tion methods is graphically illustrated by the Pentium’s FDIV error, which cost its ma
facturer an estimated $500 million. The development of practical verification method
gies for hardware verification has long been handicapped by two related problems: (1
A preliminary version of this paper was presented in [4] at the 1997 IEEE International High Level
Design Validation and Test Workshop, Oakland, California, November 14-15, 1997.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others than ACM must be hon-
ored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works, requires prior specific per-
mission and/or a fee. Permissions may be requested from Publications Dept., ACM Inc., 1515
Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, orpermissions@acm.org. 1998
by the Association for Computing Machinery, Inc.

2 · D. Van Campenhout, H. Al-Asaad, J. P. Hayes, T. Mudge, and R. B. Brown

rring
se ef-

ula-
mati-
els
n only
m and

cir-
) are
ire an

basic
in the
been

n sig-

test
ula-
ns.
s, thus
tor
plica-
basic

t tar-
s of a
n pro-
esting
, and
ion-
nder-

tion.
est-
s of
hese
ndard

tests

sting
sin-

r the
ose to
lack of published data on the nature, frequency, and severity of the design errors occu
in large-scale design projects; and (2) the absence of a verification methodology who
fectiveness can readily be quantified.

There are two broad approaches to hardware design verification: formal and sim
tion-based. Formal methods try to verify the correctness of a system by using mathe
cal proofs [32]. Such methods implicitly consider all possible behavior of the mod
representing the system and its specification, whereas simulation-based methods ca
consider a limited range of behaviors. The accuracy and completeness of the syste
specification models is a fundamental limitation for any formal method.

Simulation-based design verification tries to uncover design errors by detecting a
cuit’s faulty behavior when deterministic or pseudo-random tests (simulation vectors
applied. Microprocessors are usually verified by simulation-based methods, but requ
extremely large number of simulation vectors whose coverage is often uncertain.

Hand-written test cases form the first line of defense against bugs, focusing on
functionality and important corner (exceptional) cases. These tests are very effective
beginning of the debug phase, but lose their usefulness later. Recently, tools have
developed to assist in the generation of focused tests [13,20]. Although these tools ca
nificantly increase design productivity, they are far from being fully automated.

The most widely used method to generate verification tests automatically is random
generation. It provides a cheap way to take advantage of the billion-cycles-a-day sim
tion capacity of networked workstations available in many big design organizatio
Sophisticated systems have been developed that are biased towards corner case
improving the quality of the tests significantly [2]. Advances in simulator and emula
technology have enabled the use of very large sets as test stimuli such as existing ap
tion and system software. Successfully booting the operating system has become a
quality requirement [17,25].

Common to all the test generation techniques mentioned above is that they are no
geted at specific design errors. This poses the problem of quantifying the effectivenes
test set, such as the number of errors covered. Various coverage metrics have bee
posed to address this problem. These include code coverage metrics from software t
[2,7,11], finite state machine coverage [20,22,28], architectural event coverage [22]
observability-based metrics [16]. A shortcoming of all these metrics is that the relat
ship between the metric and the detection of classes of design errors is not well u
stood.

A different approach is to use synthetic design error models to guide test genera
This exploits the similarity between hardware design verification and physical fault t
ing, as illustrated by Figure 1. For example, Al-Asaad and Hayes [3] define a clas
design error models for gate-level combinational circuits. They describe how each of t
errors can be mapped onto single-stuck line (SSL) faults that can be targeted with sta
automated test pattern generation (ATPG) tools. This provides a method to generate
with a provably high coverage for certain classes of modeled errors.

A second method in this class stems from the area of software testing. Mutation te
[15] considers programs, termed mutants, that differ from the program under test by a
gle small error, such as changing the operator from add to subtract. The rationale fo
approach is supported by two hypotheses: 1) programmers write programs that are cl

High-Level Design Verification of Microprocessors via Error Modeling · 3

o sen-
trial
gener-
rage
uta-

n for
our

tion
itec-
are

rror
f both
out-

elimi-
odel-

f our
s the

ptual
ner-
aulty

g.
correct ones, and 2) a test set that distinguishes a program from all its mutants is als
sitive to more complex errors. Although considered too costly for wide-scale indus
use, mutation testing is one of the few approaches that has yielded an automatic test
ation system for software testing, as well as a quantitative measure of error cove
(mutation score) [24]. Recently, Al Hayek and Robach [5] have successfully applied m
tion testing to hardware design verification in the case of small VHDL modules.

This paper addresses design verification via error modeling and test generatio
complex high-level designs such as microprocessors. A block diagram summarizing
methodology is shown in Figure 2. An implementation to be verified and its specifica
are given. For microprocessors, the specification is typically the instruction set arch
ture (ISA), and the implementation is a description of the new design in a hardw
description language (HDL) such as VHDL or Verilog. In this approach, synthetic e
models are used to guide test generation. The tests are applied to simulated models o
the implementation and the specification. A discrepancy between the two simulation
comes indicates an error, either in the implementation or in the specification.

Section 2 describes our method for design error collection and presents some pr
nary design error statistics that we have collected. Section 3 discusses design error m
ing and illustrates test generation with these models. An experimental evaluation o
methodology and of the error models is presented in Section 4. Section 5 discusse
results and gives some concluding remarks.

2. DESIGN ERROR COLLECTION

Hardware design verification and physical fault testing are closely related at the conce
level [3]. The basic task of physical fault testing (hardware design verification) is to ge
ate tests that distinguish the correct circuit from faulty (erroneous) ones. The class of f

Prototype
system

Operational
systemDesign

Manufacturing

Verification
tests

Physical
fault tests

Design errors Physical faults

Design development Field deployment

Error model Fault model

FIGURE 1. Correspondence between design verification and physical fault testin

residual
design errors

4 · D. Van Campenhout, H. Al-Asaad, J. P. Hayes, T. Mudge, and R. B. Brown

sent
deal
el,
be

uages
rich-

itional

rrors
odels
nter-
r-ori-
arge

cting
ongo-
ce

VLSI
circuits to be considered is defined by a logical fault model. Logical fault models repre
the effect of physical faults on the behavior of the system, and free us from having to
with the plethora of physical fault types directly. The most widely used logical fault mod
the SSL model, combines simplicity with the fact that it forces each line in the circuit to
exercised. Typical hardware design methodologies employ hardware description lang
as their input medium and use previously designed high-level modules. To capture the
ness of this design environment, the SSL model needs to be supplemented with add
error models.

The lack of published data on the nature, frequency, and severity of the design e
occurring in large-scale projects is a serious obstacle to the development of error m
for hardware design verification. Although bug reports are collected and analyzed i
nally in industrial design projects the results are rarely published. Examples of use
ented bug lists can be found in [21,26]. Some insight into what can go wrong in a l
processor design project is provided in [14].

The above considerations have led us to implement a systematic method for colle
design errors. Our method uses the CVS revision management tool [12] and targets
ing design projects at the University of Michigan, including the PUMA high-performan
microprocessor project [9] and various class projects in computer architecture and

FIGURE 2. Deployment of proposed design verification methodology.

Design error
models

Test
generator

Implementation
simulator

Specification
simulator

Equal?

Diagnose
& debug

Specification

Unverified
design

Verified
design

CVS
revision

database

Unknown actual error

…

Assisted
verification

Assisted
verification

High-Level Design Verification of Microprocessors via Error Modeling · 5

are
never
. We
ner is
ther
od

ongs,
this
ues-
the

that
-2
A’s
ta-
fre-
design, all of which employ Verilog as the hardware description medium. Designers
asked to archive a new revision via CVS whenever a design error is corrected or whe
the design process is interrupted, making it possible to isolate single design errors
have augmented CVS so that each time a design change is entered, the desig
prompted to fill out a standardized multiple-choice questionnaire, which attempts to ga
four key pieces of information: (1) the motivation for revising the design; (2) the meth
by which a bug was detected; (3) a generic design-error class to which the bug bel
and (4) a short narrative description of the bug. A uniform reporting method such as
greatly simplifies the analysis of the errors. A sample error report using our standard q
tionnaire is shown in Figure 3. The error classification shown in the report form is
result of the analysis of error data from several earlier design projects.

Design error data has been collected so far from four VLSI design class projects
involve implementing the DLX microprocessor [19], from the implementation of the LC
microprocessor [29] which is described later, and from preliminary designs of PUM
fixed-point and floating-point units [9]. The distributions found for the various represen
tive design errors are summarized in Table 1. Error types that occurred with very low
quency are combined in the “others” category in the table.

(replace the _ with X where
appropriate)

MOTIVATION:

X bug correction
_ design modification
_ design continuation
_ performance optimization
_ synthesis simplification
_ documentation

BUG DETECTED BY:

_ inspection
_ compilation
X simulation
_ synthesis

BUG CLASSIFICATION:

Please try to identify the primary
source of the error. If in doubt,
check all categories that apply.

_ verilog syntax error

_ conceptual error

X combinational logic:

X wrong signal source
_ missing input(s)
_ unconnected (floating) input(s)
_ unconnected (floating)

output(s)
_ conflicting outputs
_ wrong gate/module type
_ missing instance of gate/module

_ sequential logic:

_ extra latch/flipflop
_ missing latch/flipflop
_ extra state
_ missing state
_ wrong next state
_ other finite state machine error

_ statement:

_ if statement
_ case statement
_ always statement
_ declaration
_ port list of module declaration

_ expression (RHS of assignment):

_ missing term/factor
_ extra term/factor
_ missing inversion
_ extra inversion
_ wrong operator
_ wrong constant
_ completely wrong

_ buses:

_ wrong bus width
_ wrong bit order

_ new category (describe below)

BUG DESCRIPTION:

Used wrong field from instruction

FIGURE 3. Sample error report.

6 · D. Van Campenhout, H. Al-Asaad, J. P. Hayes, T. Mudge, and R. B. Brown

esign
artic-

ors
dules
rong

: (1)
hould
ld be
rela-

um-
rred.
from
esign

logic
level
le 1,
3. ERROR MODELING

Standard simulation and logic synthesis tools have the side effect of detecting some d
error categories of Table 1, and hence there is no need to develop models for those p
ular errors. For example a simulator such as Verilog-XL [10] flags all Verilog syntax err
(category 9), declaration statement errors (category 12), and incorrect port lists of mo
(category 16). Also, logic synthesis tools, such as those of Synopsys, usually flag all w
bus width errors (category 10) and sensitivity-list errors in thealwaysstatement (category
13).

To be useful for design verification, error models should satisfy three requirements
tests (simulation vectors) that provide complete coverage of the modeled errors s
also provide very high coverage of actual design errors; (2) the modeled errors shou
amenable to automated test generation; (3) the number of modeled errors should be
tively small. In practice, the third requirement means that error models that define a n
ber of error instances linear, or at most quadratic in the size of the circuit are prefe
The error models need not mimic actual design bugs precisely, but the tests derived
complete coverage of modeled errors should provide very good coverage of actual d
bugs.

3.1 Basic error models

A set of error models that satisfy the requirements for the restricted case of gate-level
circuits was developed in [3]. Several of these models appear useful for the higher-
(RTL) designs found in Verilog descriptions as well. From the actual error data in Tab
we derive the following set of five basic error models:

TABLE 1. Actual error distributions from three groups of design projects.

Design error category

Relative frequency [%]

DLX PUMA LC-2

1. Wrong signal source 29.9 28.4 25.0
2. Conceptual error 39.0 19.1 0.0
3. Case statement 0.0 10.1 0.0
4. Gate or module input 11.2 9.8 0.0
5. Wrong gate/module type 12.1 0.0 5.0
6. Wrong constant 0.4 5.7 10.0
7. Logical expression wrong 0.0 5.5 10.0
8. Missing input(s) 0.0 5.2 0.0
9. Verilog syntax error 0.0 3.0 0.0

10. Bit width error 0.0 2.2 15.0
11. If statement 1.1 1.6 5.0
12. Declaration statement 0.0 1.6 0.0
13. Always statement 0.4 1.4 5.0
14. FSM error 3.1 0.3 0.0
15. Wrong operator 1.7 0.3 0.0
16. Others 1.1 5.8 25.0

High-Level Design Verification of Microprocessors via Error Modeling · 7

.
s

is
.

d by
n of
have
n for

ated
st re-
d an
ut in
onsid-
tests

es.

of a
sts for
he tar-

)
rror

alues
• Bus SSL error (SSL): A bus of one or more lines is (totally) stuck-at-0 or stuck-at-
1 if all lines in the bus are stuck at logic level 0 or 1. This generalization of the
standard SSL model was introduced in [6] in the context of physical fault testing
Many of the design errors listed in Table 1 can be modeled as SSL error
(categories 4 and 6).

• Module substitution error (MSE):This refers to mistakenly replacing a module by
another module with the same number of inputs and outputs (category 5). Th
class includes word gate substitution errors and extra/missing inversion errors

• Bus order error (BOE): This refers to incorrectly ordering the bits in a bus
(category 16). Bus flipping appears to be the most common form of BOE.

• Bus source error (BSE):This error corresponds to connecting a module input to a
wrong source (category 1).

• Bus driver error (BDE): This refers to mistakenly driving a bus with two sources
(category 16).

Direct generation of tests for the basic error models is difficult, and is not supporte
currently available CAD tools. While the errors can be easily activated, propagatio
their effects can be difficult, especially when modules or behavioral constructs do not
transparent operating modes. In the following we demonstrate manual test generatio
various basic error models.

3.2 Test generation examples

Because of their relative simplicity, the foregoing error models allow tests to be gener
and error coverage evaluated for RTL circuits of moderate size. We analyzed the te
quirements of two representative combinational circuits: a carry-lookahead adder an
ALU. Since suitable RTL tools are not available, test generation was done manually, b
a systematic manner that could readily be automated. Three basic error models are c
ered: BOEs, MSEs, and BSEs. Test generation for SSLs is discussed in [1,6] and no
are needed for BDEs, since the circuits under consideration do not have tristate bus

Example 1: The 74283 adder

An RTL model [18] of the 74283 4-bit fast adder [30] appears in Figure 4. It consists
carry-lookahead generator (CLG) and a few word gates. We show how to generate te
some design error models in the adder and then we discuss the overall coverage of t
geted error models.

BOE on A bus: A possible bus value that activates the error isAg = (0XX1), whereX de-
notes an unknown value. The erroneous value ofA is thusAf = (1XX0). Hence, we can rep-
resent the error byA = , whereD represents the error signal which is 1 (0
in the good circuit and 0 (1) in the erroneous circuit. One way to propagate this e
through the AND gateG1 is to setB = (1XX1). Hence, we getG2 = (1XX1),G5 = ,
andG3 = . Now for the module CLG we haveP = (1XX1),G = , andC0
= X. The resulting outputs areC = (XXXX) andC4 = X. This implies thatS= (XXXX) and
hence the error is not detected at the primary outputs. We need to assign more input v
to propagate the error. If we setC0 = 0, we getC = , C4 = X, andS= .

DXXD() D()

DXXD()
DXXD() DXXD()

XXD0() XXXD()

8 · D. Van Campenhout, H. Al-Asaad, J. P. Hayes, T. Mudge, and R. B. Brown

ll 33
ted all
d that
by
BSEs,

ALU,
ilog
er,

out-

MSEs

etect

th
this

st 10
Es are
Hence, the error is propagated toS and the complete test vector is (A, B, C0) =
(0XX11XX10).

On generating tests for all BSEs in the adder we find that just 2 tests detect a
detectable BSEs, and a single BSE is redundant as shown above. We further targe
MSEs in the adder and we found that 3 tests detect all 27 detectable MSEs and prove
a single MSE (G3/XNOR) is redundant. Finally, we found that all BOEs are detected
the tests generated for BSEs and MSEs. Therefore, complete coverage of BOEs,
and MSEs is achieved with only 5 tests.

Example 2: The c880 ALU

In this example, we try to generate tests for some modeled design errors in the c880
a member of the ISCAS-85 benchmark suite [8]. A high-level model based on a Ver
description of the ALU [23] is shown in Figure 5; it is composed of six modules: an add
two multiplexers, a parity unit, and two control units. The circuit has 60 inputs and 26
puts. The gate-level implementation of the ALU has 383 gates.

The design error models to be considered in the c880 are again BOEs, BSEs, and
(inversion errors on 1-bit signals). We next generate tests for these error models.

BOEs: In general, we attempt to determine a minimum set of assignments needed to d
each error. Some BOEs are redundant such as the BOE onB (PARITY), but most BOEs
are easily detectable. Consider, for example, the BOE onD. One possible way to activate
the error is to setD[3] = 1 andD[0] = 0. To propagate the error to a primary output, the pa
through IN-MUX and then OUT-MUX is selected. The signal values needed to activate
path are:

Sel-A= 0 Usel_D = 1 Usel_A8B = 0 Usel_G = 0

PassB = 0 PassA = 1 PassH = 0 F-shift = 0

F-add= 0 F-and= 0 F-xor = 0

Solving the gate-level logic equations forG andC we get:
G[1:2] = 01 C[3] = 1 C[5:7] = 011 C[14] = 0

All signals not mentioned in the above test have don’t care values. We found that ju
tests detect all 22 detectable BOEs in the c880 and serve to prove that another 2 BO
redundant.

FIGURE 4. High-level model of the 74283 carry-lookahead adder [18].

A
B

P

G

C0
C0

S

CLG

C

4

4

4

4

4
4

1

4

C4
1

G1

G2

G3
G4G5

High-Level Design Verification of Microprocessors via Error Modeling · 9

the
rsion

n
ls

rsion
s and

t the
error
by our
tion

te test
eeded
any
sup-
MSEs: Tests for BOEs detect most, but not all, inversion errors on multibit buses. In
process of test generation for the c880 ALU, we noticed a case where a test for an inve
error on busA can be found even though the BOE onA is redundant. This is the case whe
ann-bit bus (n odd) is fed into a parity function. Testing for inversion errors on 1-bit signa
needs to be considered explicitly, since a BOE on a 1-bit bus is not possible. Most inve
errors on 1-bit signals in the c880 ALU are detected by the tests generated for BOE
BSEs. This is especially true for the control signals to the multiplexers.

3.3 Conditional error model

The preceding examples, as well as prior work on SSL error detection [1,6], show tha
basic error models can be used with RTL circuits, and that high, but not complete,
coverage can be achieved with small test sets. These results are further reinforced
experiments on microprocessor verification (Section 4) which indicate that a large frac
of actual design errors (67% in one case and 75% in the other) is detected by comple
sets for the basic errors. To increase coverage of actual errors to the very high levels n
for design verification, additional error models are required to guide test generation. M
more complex error models can be derived directly from the actual data of Table 1 to
plement the basic error types, the following set being representative:

• Bus count error (BCE):This corresponds to defining a module with more or fewer
input buses than required (categories 4 and 8).

FIGURE 5. High-level model of the c880 ALU.

IN-MUX OUT-MUX

B

A

A8

D

G

Cin

H

C Cont

ParA

ParB

F

Par-Hi
Par-Al
Par-Bl

Pass-B

S
el

-A
U

se
l-D

U
se

l-A
8B

Ls
el

-D
Ls

el
-A

8B

Usel-G Cout

GEN

XORF

SUM

ADG

CNTRL1

ADDER

CNTRL2

PARITY

4

4

8

8

21

8 8

8

8

3

8

15

Pass-A
Pass-H
F-shift
F-add
F-and
F-xor

10 · D. Van Campenhout, H. Al-Asaad, J. P. Hayes, T. Mudge, and R. B. Brown

e

ra/

s that
an-

s are
ct in

test to
rrors

and
ever,
accu-
more

para-
mber
ffort
aug-

ct

ms

, but
exam-

be

rors
• Module count error (MCE):This corresponds to incorrectly adding or removing
a module (category 16), which includes the extra/missing word gate errors and th
extra/missing registers.

• Label count error (LCE): This error corresponds to incorrectly adding or
removing the labels of a case statement (category 3).

• Expression structure error (ESE): This includes various deviations from the
correct expression (categories 3, 6, 7, 11, 15), such as extra/missing terms, ext
missing inversions, wrong operator, and wrong constant.

• State count error (SCE): This error corresponds to an incorrect finite state
machine with an extra or missing state (category 14).

• Next state error (NSE): This error corresponds to incorrect next state function in
a finite state machine (FSM) (category 14).

Although, this extended set of error models increases the number of actual error
can be modeled directly, we have found them to be too complex for practical use in m
ual or automated test generation. We observed that the more difficult actual error
often composed of multiple basic errors, and that the component basic errors intera
such a way that a test to detect the actual error must be much more specific than a
detect any of the component basic errors. Modeling these difficult composite e
directly is impractical as the number of error instances to be considered is too large
such composite modeled errors are too complex for automated test generation. How
as noted earlier, a good error model does not necessarily need to mimic actual errors
rately. What is required is that the error model necessitates the generation of these
specific tests. To be practical, the complexity of the new error models should be com
ble to that of the basic error models. Furthermore the (unavoidable) increase in the nu
of error instances should be controlled to allow trade-offs between test generation e
and verification confidence. We found that these requirements can be combined by
menting the basic error models with a condition.

A conditional error(C,E) consists of a conditionC and a basic errorE; its interpreta-
tion is thatE is only active whenC is satisfied. In general,C is a predicate over the signals
in the circuit during some time period. To limit the number of error instances, we restriC
to a conjunction of terms , whereyi is a signal in the circuit andwi is a constant of
the same bit-width asyi and whose value is either all-0s or all-1s. The number of ter
(condition variables) appearing inC is said to be theorder of (C,E). Specifically, we con-
sider the following conditional error types:

• Conditional single-stuck line (CSSLn) error of ordern;
• Conditional bus order error (CBOEn) of ordern;
• Conditional bus source error (CBSEn) of ordern.

When n = 0, a conditional error (C,E) reduces to the basic errorE from which it is
derived. Higher-order conditional errors enable the generation of more specific tests
lead to a greater test generation cost due to the larger number of error instances. For
ple, the number of CSSLn errors on a circuit withN signals is . Although the
total set of allN signals we consider for each term in the condition can possibly
reduced, CSSLn errors wheren > 2 are probably not practical.

For gate-level circuits (where all signals are 1-bit), it can be shown that CSSL1 er

yi wi=()

θ 2
n 1+

N
n 1+()

High-Level Design Verification of Microprocessors via Error Modeling · 11

ing
river
lows.
s

gate

pet-
ard-

par-
dels
ion 3.2,
roxi-
test
logy

men-
n, the

sys-
.
h that
to

peri-
at

t

error

rror
c-
ept of
ult

ener-
iven

ty
y end
n
one
cover the following basic error models: MSEs (excluding XOR and XNOR gates), miss
2-input gate errors, BSEs, single BCEs (excluding XOR and XNOR gates), and bus d
errors. That CSSL1 errors cover missing two-input gate errors can be seen as fol
Consider a two-input AND gateY=AND(X1,X2) in the correct design; in the erroneou
design, this gate is missing and netY is identical to netX1. To expose this error we have to
setX1 to 1,X2 to 0, and sensitizeY. Any test that detects the CSSL1 error, (X2=0,Y s-a-0)
in the erroneous design, will also detect the missing gate error. The proof for other
types is similar. Higher-order CSSLn errors improve coverage even further.

4. COVERAGE EVALUATION

To show the effectiveness of a verification methodology, one could apply it and a com
ing methodology to an unverified design. The methodology that uncovers more (and h
er) design errors in a fixed amount of time is more effective. However, for such a com
ison to be practical, fast and efficient high-level test generation tools for our error mo
appear to be necessary. Although we have demonstrated such test generation in Sect
it has yet to be automated. We therefore designed a controlled experiment that app
mates the conditions of the original experiment, while avoiding the need for automated
generation. The experiment evaluates the effectiveness of our verification methodo
when applied to two student-designed microprocessors. A block diagram of the experi
tal set-up is show in Figure 6. As design error models are used to guide test generatio
effectiveness is closely related to the synthetic error models used.

To evaluate our methodology, a circuit is chosen for which design errors are to be
tematically recorded during its design. LetD0 be the final, presumably correct design
From the CVS revision database, the actual errors are extracted and converted suc
they can be injected in the final designD0. In the evaluation phase, the design is restored
an (artificial) erroneous stateD1 by injecting a single actual error into the final designD0.
This set-up approximates a realistic on-the-fly design verification scenario. The ex
ment answers the question: givenD1, can the proposed methodology produce a test th
determinesD1 to be erroneous? This is achieved by examining the actual error inD1, and
determining if a modeled design error exists that is dominated by the actual error. LeD2
be the design constructed by injecting the dominated modeled error inD1, and letM be the
error model which defines the dominated modeled error. Such a dominated modeled
has the property that any test that detects the modeled error inD2 will also detect the
actual error inD1. Consequently, if we were to generate a complete test set for every e
defined onD1 by error modelM, D1would be found erroneous by that test set. Error dete
tion is determined as discussed earlier (see Section 1, Figure 2). Note that the conc
dominance in the context of design verification is slightly different than in physical fa
testing. Unlike in the testing problem, we cannot remove the actual design error fromD1
before injecting the dominated modeled error. This distinction is important because g
ating a test for an error of omission, which is generally very hard, becomes easy if g
D0 instead ofD1.

The erroneous designD1 considered in this experiment is somewhat artificial. In reali
the design evolves over time as bugs are introduced and eliminated. Only at the ver
of the design process, is the target circuit in a state where it differs from the final desigD0
in just a single design error. Prior to that time, the design may contain more than

12 · D. Van Campenhout, H. Al-Asaad, J. P. Hayes, T. Mudge, and R. B. Brown

if we
epen-

rep-
resent

sed
truc-

rve as
zable
on-
ts of
stom
lines

, etc.
sign

r col-

tect it.

-
tion
error

y.
design error. To the extent that the design errors are independent, it does not matter
consider a single or multiple design errors at a time. Furthermore, our results are ind
dent of the order in which one applies the generated tests.

We implemented the preceding coverage-evaluation experiment for two small but
resentative designs: a simple microprocessor and a pipelined microprocessor. We p
our results in the remainder of this section.

4.1 A simple microprocessor

The Little Computer 2 (LC-2) [29] is a small microprocessor of conventional design u
for teaching purposes at the University of Michigan. It has a representative set of 16 ins
tions which is a subset of the instruction sets of most current microprocessors. To se
a test case for design verification, one of us designed behavioral and RTL synthesi
Verilog descriptions for the LC-2. The behavioral model (specification) of the LC-2 c
sists of 235 lines of behavioral Verilog code. The RTL design (implementation) consis
a datapath module described as an interconnection of library modules and a few cu
modules, and a control module described as an FSM with five states. It comprises 921
of Verilog code, excluding the models for library modules such as adders, register files
A gate-level model of the LC-2 can thus be obtained using logic synthesis tools. The de
errors made during the design of the LC-2 were systematically recorded using our erro
lection system (Section 2).

For each actual design error recorded, we derived the necessary conditions to de
An error is detected by an instruction sequences if the external output signals of the
behavioral and RTL models are distinguished bys. We found that some errors are unde
tectable since they do not affect the functionality of the microprocessor. The detec
conditions are used to determine if a modeled error that is dominated by the actual

FIGURE 6. Experiment to evaluate the proposed design verification methodolog

Simulate Simulate

…

Actual error
database

Debug by

Design error
collection

Test for
modeled

error

Evaluation of verification methodology

Expose
modeled error

Expose
actual error

Design and debugging process

Design

Inject
single
actual
error

Inject
modeled

error

Design error
model

designer

Actual error
Modeled error

revisions
D1D0

D2

High-Level Design Verification of Microprocessors via Error Modeling · 13

ror is
for
ays
the

le to
curs
rrect
acti-

LC-
uring
ogic

cate-
e col-
ng to
dom-

ror.

d

can be found. An example where we were able to do that is shown in Figure 7. The er
a BSE on data inputD1 of the multiplexer attached to the program counter PC. Testing
D1 stuck-at-1 will detect the BSE since the outputs of PC and its incrementer are alw
different, i.e., the error is always activated, so testing for this SSL error will propagate
signal onD1 to a primary output of the microprocessor. A case where we were not ab
find a modeled error dominated by the actual error is shown in Figure 8. The error oc
where a signal is assigned a value independent of any condition. However, the co
implementation requires an if-then-else construct to control the signal assignment. To
vate this error, we need to set ir_out[15:12] == 4’b1101, ir_out[8:6]≠ 3’b111, and
RF[ir_out[8:6]] ≠ RF[3’b111], where RF[i] refers to the contents of the registeri in the
register file. An instruction sequence that detects this error is shown in Figure 8.

We analyzed the actual design errors in both the behavioral and RTL designs of the
2, and the results are summarized in Table 2. A total of 20 design errors were made d
the design, of which four errors are easily detected by the Verilog simulator and/or l
synthesis tools and two are undetectable. The actual design errors are grouped by
gory; the numbers in parentheses refer to the corresponding category in Table 1. Th
umns in the table give the type of the simplest dominated modeled error correspondi
each actual error. For example, among the 4 remaining wrong-signal-source errors, 2

FIGURE 7. An example of an actual design error that is dominated by an SSL er

Erroneous design Correct design

1 023 Incrementer

PC

D0

D1

D2D3

Mux 1 023 Incrementer

PC

D0

D1

D2D3

Mux

// Instruction decoding
// Decoding of register file
inputs
// 1- Decoding of R1

CORRECT CODE:

if (ir_out[15:12] == 4'b1101)
 R1_temp = 3'b111;
 else
 R1_temp = ir_out[8:6];

ERRONEOUS CODE:

 R1_temp = ir_out[8:6];

FIGURE 8. An example of an actual design error for which no dominated modele
error was found, and an instruction sequence that detects the actual error.

// Instruction sequence

@3000
main:

JSR sub0
........
........

sub0:
NOT R0, R7
RET //1101 0000 0000 0000

//
// After execution of instructions
// PC = 3001 in correct design
// PC = CFFE in incorrect design

Design error Test sequence

14 · D. Van Campenhout, H. Al-Asaad, J. P. Hayes, T. Mudge, and R. B. Brown

SEs.
with
1 are

hich
ver-
stage
ode,
n er-
using

ct it.
ifica-
only
r file
about
ISA-
each
rrors
rea-

em as
design
rror

deled

C-2.
inate an SSL error and 2 dominate a BSE error.
We can infer from Table 2 that most errors are detected by tests for SSL errors or B

About 75% of the actual errors in the LC-2 design can be detected after simulation
tests for SSL errors and BSEs. The coverage increases to 90% if tests for CSSL
added.

4.2 A pipelined microprocessor

Our second design case study considers the well-known DLX microprocessor [19], w
has more of the features found in contemporary microprocessors. The particular DLX
sion considered is a student-written design that implements 44 instructions, has a five-
pipeline and branch prediction logic, and consists of 1552 lines of structural Verilog c
excluding the models for library modules such as adders, registerfiles, etc. The desig
rors committed by the student during the design process were systematically recorded
our error collection system.

For each actual design error we painstakingly derived the requirements to dete
Error detection was determined with respect to one of two reference models (spec
tions). The first reference model is an ISA model, and as such is not cycle-accurate:
the changes made to the ISA-visible part of the machine state, that is, to the registe
and memory, can be compared. The second reference model contains information
the microarchitecture of the implementation and gives a cycle-accurate view of the
visible part of the machine state (including the program counter). We determined for
actual error whether it is detectable or not with respect to each reference model. E
undetectable with respect to both reference models may arise from the following two
sons: (1) Designers sometimes make changes to don’t care features, and log th
errors. This happens because designers can have a more detailed specification (
intent) in mind than that actually specified. (2) Inaccuracies can occur when fixing an e
requires multiple revisions.

We analyzed the detection requirements of each actual error and constructed a mo

TABLE 2. Actual design errors and the corresponding dominated modeled errors for L

Actual errors
Corresponding dominated

modeled errors

Category Total
Easily

detected
Undetec-

table SSL BSE CSSL1
Un-

known

Wrong signal source (1) 4 0 0 2 2 0 0
Expression error (7) 4 0 0 2 0 1 1
Bit width error (10) 3 3 0 0 0 0 0
Missing assignment (16) 3 0 0 0 0 2 1
Wrong constant (6) 2 0 0 2 0 0 0
Unused signal (16) 2 0 2 0 0 0 0
Wrong module (5) 1 0 0 1 0 0 0
Always statement (13) 1 1 0 0 0 0 0

Total 20 4 2 7 2 3 2

High-Level Design Verification of Microprocessors via Error Modeling · 15

ltiple
r the
t

r

ion

rors
num-

ories is
clas-

egory
od-
mn
del;

ural
iven
error dominated by the actual error, wherever possible. One actual error involved mu
signal source errors, and is shown in Figure 9. Also shown are the truth tables fo
immediately affected signals; differing entries are shaded. Error detection via fanouY1
requires settingS1 = 1, S0 = 1, (X1 ≠ X2), and sensitizingY1. However, the combination
(S1 = 1,S0 = 1) is not achievable and thus error detection viaY1 is not possible. Detection
via fanoutY2 or Y3 requires settingS1 = 0, S0 = 1, (X0 ≠ X1), and sensitizingY2 or Y3.
However,S0 = 1 blocks error propagation viaY2 further downstream. Hence, the erro
detection requirements are:S1 = 0,S0 = 1, (X0 ≠ X1), and sensitizingY3.

Now consider the modeled errorE1 = S0 s-a-0 inD1. Activation of E1 in D1 requires
S1 = 0, S0 = 1. Propagation requires (X0 ≠ X1), and sensitizingY1, Y2 or Y3. As men-
tioned before,S0 = 1 blocks error propagation viaY2. But asE1 can be exposed viaY1
without sensitizingY3, E1 is not dominated by the given actual error. To ensure detect
of the actual error, we can conditionS0 s-a-0 such that sensitization ofY3 is required. The
design contains a signaljump_to_reg_instrthat, when set to 1, blocks sensitization ofY1,
but allows sensitization ofY3. Hence the CSSL1 error (jump_to_reg_instr= 1, S0 s-a-0) is
dominated by the actual error.

The results of this experiment are summarized in Table 3. A total of 39 design er
were recorded by the designer. The actual design errors are grouped by category; the
bers in parentheses refer again to Table 1. The correspondence between the categ
imprecise, because of inconsistencies in the way in which different student designers
sified their errors. Also, some errors in Table 3 are assigned to a more specific cat
than in Table 1, to highlight their correlation with the errors they dominate. ‘Missing m
ule’ and ‘wrong signal source’ errors account for more than half of all errors. The colu
headed ‘ISA’ indicates how many errors are detectable with respect to the ISA-mo
‘ISAb’ lists the number of errors only detectable with respect to the micro-architect
reference model. The sum of ‘ISA’ and ‘ISAb’ does not always add up the number g

Erroneous design D 1 Correct design D 0

FIGURE 9. Example of an actual design error in our DLX implementation.

S1,S0 Y1 Y2,Y3

0 0 X0 X0

0 1 X1 X1

1 0 X2 X2

1 1 X2 X2

S1,S0 Y1 Y2,Y3

0 0 X0 X0

0 1 X1 X0

1 0 X2 X2

1 1 X1 X2

M0
M0

M1
M1

S1
S0

X0

X1

X2

Y3

Y2

Y11

0

1

0

S0
S1

X0

X2

X1

Y3

Y2

Y1
1

01

0

16 · D. Van Campenhout, H. Al-Asaad, J. P. Hayes, T. Mudge, and R. B. Brown

spect
ated
mod-
tes a

h is
rrors.
r the
sign
ctual
d, at

be ob-
se de-
con-

impor-
n be
other
mber

rrors
of the
confi-
s BSE

rrors
3

LX.
in ‘Total’; the difference corresponds to actual errors that are not undetectable with re
to either reference model. The remaining columns give the type of the simplest domin
modeled error corresponding to each actual error. Among the 10 detectable ‘missing
ule(s)’ errors, 2 dominate an SSL error, 6 dominate a CSSL1 error, and one domina
CBOE; for the remaining one, we were not able to find a dominated modeled error.

A conservative measure of the overall effectiveness of our verification approac
given by the coverage of actual design errors by complete test sets for modeled e
From Table 3 it can be concluded that for this experiment, any complete test set fo
inverter insertion errors (INV) also detects at least 21% of the (detectable) actual de
errors; any complete test set for the INV and SSL errors covers at least 52% of the a
design errors; if a complete test set for all INV, SSL, BSE, CSSL1 and CBOE is use
least 94% of the actual design errors will be detected.

5. DISCUSSION

The preceding experiments indicate that a high coverage of actual design errors can
tained by complete test sets for a limited number of modeled error types, such as tho
fined by our basic and conditional error models. Thus our methodology can be used to
struct focused test sets aimed at detecting a broad range of actual design bugs. More
tantly, perhaps, it also supports an incremental design verification process that ca
implemented as follows: First, generate tests for SSL errors. Then generate tests for
basic error types such as BSEs. Finally, generate tests for conditional errors. As the nu
of SSL errors in a circuit is linear in the number of signals, complete test sets for SSL e
can be relatively small. In our experiments such test sets already detect at least half
actual errors. To improve coverage of actual design errors and hence increase the
dence in the design, an error model with a quadratic number of error instances, such a
and CSSL1, can be used to guide test generation.

The conditional error models proved to be especially useful for detecting actual e
that involve missing logic. Most ‘missing module(s)’ and ‘missing input(s)’ in Table

TABLE 3. Actual design errors and the corresponding dominated modeled errors for D

Actual errors Corresponding dominated modeled errors

Category ISA ISAb Total INV SSL BSE CSSL1 CBOE CSSL2
Un-

known

Missing module (2) 8 2 14 0 2 0 6 1 0 1
Wrong singal source (1) 9 2 11 1 4 5 1 0 0 0
Complex (2) 3 0 3 0 3 0 0 0 0 0
Inversion (5) 1 2 3 3 0 0 0 0 0 0
Missing input (4) 1 0 3 0 0 0 1 0 0 0
Unconnected input (4) 3 0 3 3 0 0 0 0 0 0
Missing minterm (2) 1 0 1 0 0 0 0 0 1 0
Extra input (2) 1 0 1 0 1 0 0 0 0 0

Total 27 6 39 7 10 5 8 1 1 1

High-Level Design Verification of Microprocessors via Error Modeling · 17

em is
pplies

indus-
ana-
strate
lysis
urther
ome
.
ssess
ndi-
rrors
ed to

ed in
esign
ation.
idance

ction

No.
sition

n,”

an-

gen-

ign

ied

.
tar-
cannot be covered when only the basic errors are targeted. However, all but one of th
covered when CSSL1 and CBOE errors are targeted as well. The same observation a
to the ‘missing assignment(s)’ errors in Table 2.

The designs used in the experiments are small, but appear representative of real
trial designs. An important benefit of such small-scale designs is that they allow us to
lyze each actual design error in detail. The coverage results obtained strongly demon
the effectiveness of our model-based verification methodology. Furthermore the ana
and conclusions are independent of the manner of test generation. Nevertheless, f
validation of the methodology using industrial-size designs is desirable, and will bec
more practical when CAD support for design error test generation becomes available

Error models of the kind introduced here can also be used to compute metrics to a
the quality of a given verification test set. For example, full coverage of basic (unco
tional) errors provides one level of confidence in the design, coverage of conditional e
of order provides another, higher confidence level. Such metrics can also be us
compare test sets and to direct further test generation.

We envision the proposed methodology eventually being deployed as suggest
Figure 2. Given an unverified design and its specification, tests targeted at modeled d
errors are automatically generated and applied to the specification and the implement
When a discrepancy is encountered, the designer is informed and perhaps given gu
on diagnosing and fixing the error.

ACKNOWLEDGMENTS

We thank Steve Raasch and Jonathan Hauke for their help in the design error colle
process. We further thank Matt Postiff for his helpful comments.

The research discussed in this paper is supported by DARPA under Contract
DABT63-96-C-0074. The results presented herein do not necessarily reflect the po
or the policy of the U.S. Government.

REFERENCES

[1] M. S. Abadir, J. Ferguson, and T. E Kirkland, “Logic design verification via test generatio
IEEE Trans. on Computer-Aided Design, Vol. 7, pp. 138–148, January 1988.

[2] A. Aharon et al., “Verification of the IBM RISC System/6000 by dynamic biased pseudo-r
dom test program generator”,IBM Systems Journal, Vol. 30, No. 4, pp. 527–538, 1991.

[3] H. Al-Asaad and J. P. Hayes, “Design verification via simulation and automatic test pattern
eration”,Proc. Int. Conf. on Computer-Aided Design, 1995, pp. 174-180.

[4] H. Al-Asaad, D. Van Campenhout, J. P. Hayes, T. Mudge, and R. B. Brown. “High-level des
verification of microprocessors via error modeling,”Dig. IEEE High Level Design Validation
and Test Workshop, pp. 194–201, 1997.

[5] G. Al Hayek and C. Robach, “From specification validation to hardware testing: A unif
method”,Proc. IEEE Int. Test Conf., 1996, pp. 885–893.

[6] D. Bhattacharya and J. P. Hayes, “High-level test generation using bus faults,”Dig. 15th Int.
Symp. on Fault-Tolerant Computing, 1985, pp. 65–70.

[7] B. Beizer,Software Testing Techniques, Van Nostrand Reinhold, New York, 2nd edition, 1990
[8] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational benchmark circuits and a

get translator in fortran”,Proc. IEEE Int. Symp. on Circuits and Systems, 1985, pp. 695-698.
[9] R. Brown et al., “Complementary GaAs technology for a GHz microprocessor”,Techn. Dig. of

n 1≥

18 · D. Van Campenhout, H. Al-Asaad, J. P. Hayes, T. Mudge, and R. B. Brown

w

ac-

func-

lts”,

ver-

p://

l-

6.
g”,
the GaAs IC Symp., 1996, pp. 313-316.
[10] Cadence Design Systems Inc.,Verilog-XL Reference Manual, 1994.
[11] F. Casaubieilh et al., “Functional verification methodology of Chameleon processor”,Proc.

Design Automation Conf., 1996, pp. 421–426.
[12] P. Cederqvist et al.,Version Management with CVS, Signum Support AB, Linkoping, Sweden,

1992.
[13] A. K. Chandra et al., “AVPGEN - a test generator for architecture verification”,IEEE Trans. on

Very Large Scale Integration (VLSI) Systems, Vol. 3, pp. 188–200, June 1995.
[14] R. P. Colwell and R. A. Lethin, “Latent design faults in the development of the Multiflo

TRACE/200”,IEEE Trans. on Reliability, Vol. 43, No. 4, pp. 557–565, December 1994.
[15] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection: Help for the pr

ticing programmer”,IEEE Computer, pp. 34–41, April 1978.
[16] S. Devadas, A. Ghosh, and K. Keutzer, “Observability-based code coverage metric for

tional simulation”,Proc. Int. Conf. on Computer-Aided Design, 1996, pp. 418–425.
[17] G. Ganapathy et al., “Hardware emulation for functional verification of K5”,Proc. Design Auto-

mation Conf., 1996, pp. 315–318.
[18] M. C. Hansen and J. P. Hayes, “High-level test generation using physically-induced fau

Proc. VLSI Test Symp., 1995, pp. 20-28.
[19] J. Hennessy and D. Patterson,Computer Architecture: A Quantitative Approach, Morgan Kauf-

man, San Francisco, 1990.
[20] A. Hosseini, D. Mavroidis, and P. Konas, “Code generation and analysis for the functional

ification of microprocessors”,Proc. Design Automation Conf., 1996, pp. 305–310.
[21] Intel Corp., “Pentium Processor Specification Update,” 1998, available from htt

www.intel.com.
[22] M. Kantrowitz and L. M. Noack, “I’m done simulating; Now what? Verification coverage ana

ysis and correctness checking of the DECchip 21164 Alpha microprocessor”,Proc. Design
Automation Conf., 1996, pp. 325–330.

[23] H. Kim, “C880 high-level Verilog description”, Internal report, University of Michigan, 199
[24] K. N. King and A. J. Offutt, “A Fortran language system for mutation-based software testin

Software Practice and Experience, Vol. 21, pp. 685–718, July 1991.
[25] J. Kumar, “Prototyping the M68060 for concurrent verification”,IEEE Design & Test, Vol. 14,

No. 1, pp. 34–41, 1997.
[26] MIPS Technologies Inc.,MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0, May

1994.
[27] A. J. Offutt et al., “An experimental determination of sufficient mutant operators”,ACM Trans.

on Software Engineering & Methodology, Vol. 5, pp. 99-118, April 1996.
[28] S. Palnitkar, P. Saggurti, and S.-H. Kuang, “Finite state machine trace analysis program”,Proc.

Int. Verilog HDL Conf., 1994, pp. 52–57.
[29] M. Postiff,LC-2 Programmer’s Reference Manual, Revision 3.1, University of Michigan, 1996.
[30] Texas Instruments,The TTL Logic Data Book, Dallas, 1988.
[31] M. R. Woodward, “Mutation testing – its origin and evolution”,Information & Software Tech-

nology, Vol. 35, pp. 163–169, March 1993.
[32] M. Yoeli (ed.), Formal Verification of Hardware Design, IEEE Computer Society Press, Los

Alamitos, Calif., 1990.

	1. Introduction
	2. Design Error Collection
	3. Error Modeling
	3.1 Basic error models
	3.2 Test generation examples
	Example 1: The 74283 adder
	Example 2: The c880 ALU

	3.3 Conditional error model

	4. Coverage evaluation
	4.1 A simple microprocessor
	4.2 A pipelined microprocessor

	5. Discussion
	Acknowledgments
	References

