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Abstract—This paper presents a new framework for formal logic
verification. What is depicted here is fundamentally different from
previous approaches. In earlier approaches, the circuit is either not
changed during the verification process, as in ordered binary de-
cision diagram (OBDD) or implication-based methods, or the cir-
cuit is progressively reduced during verification. Whereas, in our
approach, we actually enlarge the circuits by adding gates during
the verification process. Specifically, introduced here is a new tech-
nique that transforms the reference circuit as well as the circuit to
be verified, so that the similarity between the two is progressively
enhanced. This requires addition of gates to the reference circuit
and/or the circuit to be verified. In the process, we reduce the dis-
similarity between the two circuits, which makes it easier to verify
the circuits.

In this paper, we first introduce a method to identify parts of the
two circuits which are dissimilar. We use the number of implica-
tions that exist between the nodes of one circuit and the nodes of the
other circuit as a metric of similarity. As demonstrated, this can be
a very useful metric. We formulate transformations that can reduce
the dissimilarity. These are performed on those parts of the circuits
which are found to be dissimilar. These admissible transformations
are functionality-preserving and based on certain Boolean differ-
ence formulations. The dissimilarity reduction transformations in-
troduce new logical relationships between the two circuits that did
not previously exist. These logical relationships are extracted as
new implications, which are then used to reduce the complexity of
the verification problem. These two steps are repeated in succession
until the verification process is complete. A complete procedure
is presented which demonstrates the power of our logic verifica-
tion technique. The concept presented in this paper can be useful
in accelerating verification frameworks which rely on structural
methods.

Index Terms—Combinational logic circuits, design verification,
equivalence checking, logic circuit testing, logic function.

I. INTRODUCTION

D ISTINCT methods for formal combinational
logic-level verification include binary decision dia-

gram (BDD)-based functional methods [9]–[13] and structural
methods [2]–[8]. These methods are formulated in the equiv-
alence checking framework where a reference design is to be
checked for equivalence against its implementation. The func-
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tional methods are known to fail for certain types of circuits,
whereas structural methods [also referred to as automatic test
pattern generation (ATPG)-based methods] have been shown
recently to provide more stable performance over a broad
spectrum of circuit types [2]–[8]. Structural methods utilize
similarity between the circuits and are not memory-intensive.
Some of these methods have only linear memory requirements
[2]–[6].

Often, synthesis tools significantly transform the unopti-
mized circuit, resulting in an optimized circuit with minimal
similarity with the original. As a result, these structural methods
which rely on similarity, are unable to verify some circuits.
This appears to be the major shortcoming of these methods
which are sometimes broadly referred to as ATPG methods.
The suggested remedies have been to take breakpoints in the
synthesis process and “spit out” intermediate circuits bearing
more similarity to each other, or to synthesize locally, leaving
module inputs and outputs unchanged. Often, the full capability
of a synthesis tool is not used, as the synthesized circuits may
be difficult to verify. Hence, better verification tools will not
only ensure correctness but also pave the way for more efficient
designs.

The proposed framework introduces a powerful and a more
general solution and is based on the following.

1) A metric of similaritybased onindirect implications.
2) A technique toidentify those regions where the two cir-

cuits under verification and the reference circuit are sig-
nificantly dissimilar from each other.

3) Once these regions which constitute the bottlenecks
for the verification process are identified,similarity-en-
hancing transformationsare performed. These augment
both the reference circuit and the circuits under verifica-
tion in such a way as toinducesimilarity. This makes it
easier to verify.

4) Essentially the proposed approachaugmentsthe circuit
during the verification process in such a way that as the
circuit gets larger, it gets easier to verify.

5) The method is further strengthened by using learning
procedures at specific regions where potential equivalent
nodes exist.

Here, we first introduce a metric of similarity through indi-
rect implications between nodes of one circuit and the nodes of
the other circuit whose equivalence is being checked. We then
propose to identify regions which are significantlydissimilar
using this metric. This information is then used for performing
certain similarity-enhancing transformations by addition of
gates and connections in a guided way. This is followed by
renewed search for logical implications which are induced
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Fig. 1. Miter formulation.

by these transformations. These are used in our verification
process to make it possible to verify and accelerate the process.
It may be noted that the proposed approach, like other structural
methods, has only linear memory requirements. However, our
approach does not require strong similarity since it introduces
similarity through transformations where none exists. The
experimental results not only demonstrate that our approach
is able to verify circuits where other approaches fail, but also
completes faster. First, we attempt verification using impli-
cation. If this fails, we then identify regions in the reference
circuit and circuit under verification where no similarity exists
between the two. We then perform transformations, connecting
a similar region in one circuit to a dissimilar region in another.
This is performed in conjunction with certain heuristics so as
to reduce dissimilarity. The transformations are designed to
be admissible (function-preserving). Thus, although the miter
undergoes structural changes, the original functionality of the
miter remains unaltered throughout the verification process.
After each transformation, we recompute similarities which
are defined through logical implications. Using in succession
newly found implications between the transformed circuits, we
attempt to verify again. This two-step process is repeated until
the verification is complete. During the process of verification,
the circuits actually get enlarged—a counter-intuitive solution
to the verification problem. Previous methods either preserved
the circuit [6], [13] or attempted to reduce it physically [7] or
logically [5].

This paper is organized as follows. Section II enumerates
the prior work in this area. Section III explains the proposed
method. Section IV discusses the experimental results. The last
section presents our conclusions.

II. PRIOR WORK

Given two circuits, one a known good design termed the refer-
ence circuit (RC) and the other, referred to as a circuit under ver-
ification (CUV). A miter of the circuits is formed, as shown in
Fig. 1. The problem of verification then reduces to the problem
of satisfiability.

Recently, new approaches to verification have been proposed
that use ATPG techniques combined with random simulation
[7], and implication combined with ordered binary decision di-
agram (OBDD) [5]. These are broadly categorized as ATPG
techniques. However, there are some important differences be-
tween these different techniques. The technique proposed in [7]

reduces the miter by finding nodes in the RC which are equiva-
lent to nodes in the CUV. Then it replaces the nodes in the RC
with nodes in the CUV progressively, working from inputs to
outputs. Ultimately, if the two circuits are equivalent, then each
output node in the RC can be replaced with the corresponding
output node in the CUV. The search for intermediate equivalent
nodes is guided by simulation and ATPG is used to prove their
equivalence. The techniques proposed in [5] use indirect impli-
cations derived by a recursive learning technique [2], [4], [6].
The implications, combined with the D-implication proposed in
[11], can provide a technique more powerful than that proposed
by [7]. Various logical relationships between the two circuits,
which can be extracted as implications, provide a super set of
those extracted by [7]. Essentially, equivalent nodes [4] are a
form of implication. For example if and are equivalent then

and . If and are complements
then . Equivalent or complement relation-
ships can be translated into two implications. Structural methods
like [5], [7] rely on identifying equivalent nodes between the
two circuits. They may also identify nodes which are equiva-
lentunder don’t care conditions.Replacing a node in one circuit
with the corresponding node in the other circuit reduces the size
of the miter physically [7] or logically [5]. The smaller circuit
eases the final task of verification, using ATPG concepts. How-
ever, these methods do not exploitasymmetric relationships[6]
that may exist between signal nodes. For example, a value on
node may imply a signal value in , but not vice versa.

Two methods using BDDs have been presented in [9], [10].
In [9], equivalences are identified and the circuit is reduced by
connecting these together and eliminating the cones of logic in
the RC/CUV. The reduced circuit is more easily verified. The
equivalence proving is done using BDDs. It is a very fast and ef-
ficient implementation. In [10], equivalent nodes are identified
efficiently using hashing. Efficient BDD techniques are used to
manipulate the functional representation of the circuit and verify
them. However these methods do not exploit asymmetric rela-
tionships [6] as explained above. Also, the methods do not ad-
dress on verifying circuits that have very less number of equiv-
alent points among them.

Our approach differs from the previous approach conceptu-
ally in that, not only do we exploit whatever logical relation-
ships may exist between RC and CUV, but we also induce new
logical relationships through introduction of new connections
and extra gates between the two circuits. As seen later, as the
number of gates in the circuits increases during verification, it
becomes easier to verify. As the circuit size grows during ver-
ification, it gets easier to verify, somewhat counter to the con-
ventional wisdom of reducing the circuit [1] or partitioning the
circuit [5].

Fig. 2 shows a classification of combinational logic verifica-
tion methods based on how the circuit structure changes during
the verification process. The first category keeps the circuit un-
changed [5], [12], [13], [10]. The second category tries to sim-
plify the verification process by reducing the circuit size physi-
cally [7], [9] or logically [5]. The final category is the proposed
approach which enlarges the circuit. Although increasing the
circuit size seems counter-intuitive, it actually eases the veri-
fication process if guided properly, as will be shown later.
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Fig. 2. Classification of logic verification methodologies based on structural
modifications during verification.

The proposed approach removes a shortcoming of the struc-
tural methods by incorporating additional logical relations be-
tween similar and dissimilar parts of the circuit, in a cost-ef-
fective manner. The underlying framework relies on identifica-
tion of dissimilar regions which are the bottlenecks of the ver-
ification process. The dissimilar regions are then transformed
into similar regions by adding gates and connections. Specif-
ically, the proposed verification procedure uses basically two
verification modes.The first mode consists of verification using
well-known techniques of implications, simulation and equiva-
lences. When this fails to verify within a certain resource bound,
the circuits, the procedure changes to the secondverification
mode.This consists of performing similarity-enhancing trans-
formations to induce similarity in an ordered manner. Because
structurally transforming a circuit is a step which cannot be re-
versed, this process is guided using certain heuristics [3] which
are also crucial. Experimental results have shown that this ap-
proach is powerful to verify dissimilar circuits efficiently.

III. PROPOSEDVERIFICATION PROCEDURE

Our verification procedure aims to identify structurally dis-
similar regions of the circuit. It uses certain transformations to
enhance similarity in these regions.

A. Identifying Dissimilar Regions

It has been observed that structural methods need a large
amount of computational time for dissimilar circuits. To per-
form more efficient verification, it is necessary to identify dis-
similar regions so that additional effort is spent in selected re-
gions of the circuit which constitute the bottleneck in verifica-
tion.

We formulate the metric of similarity using logical implica-
tions. This formulation of similarity is shown to be quite useful
in identifying precisely those regions which have the least func-
tional similarity. We then target our search for potential trans-
formations of these regions so as to induce similarity.

There are two types of implications: direct and indirect. Di-
rect implications are derived from the truth tables of the states
and are of limited use. Indirect implications, on the other hand,
provide a powerful tool for identifying logical relationships. Re-
cursive learning procedure identifies all indirect implications,
given sufficient levels of recursion [4]. These indirect impli-
cations form the basis of our secondary metric and illustrated
below.

Example 3.1: In Fig. 3, consider the primary output, 1.
We can invoke recursive learning to determine any indirect im-
plications of this value assignment. The value 1 makes the

Fig. 3. Example circuit to explain behavior of recursive learning.

gate unjustified. We enter level-1 recursion with two pos-
sible justifications: and

. For 1, we obtain through direct
implication. With and 1, we enter the second level
of recursion, and obtain two sets of justification. For gate,

or are the
two possible justifications. Through direct implication, we de-
duce 1. Similarly with level-2 recursion, we can deduce that

1 1. Thus, by direct implication, we obtain that
. Similarly, with 1, we have 1. In either

case, we have 0, which is the consequence of the intersec-
tion implications, resulting from the two possible justifications,

and , at gate . It can be seen that the intermediate of
implications, such as implying 1, are not learned
because the only value assignment at hand is1.

It may be noted that given a large enough recursion level, one
is guaranteed to find all implications. Since time complexity is
exponential in terms of the number of levels of recursion, it is not
practical to allow an arbitrarily large recursion level. However,
it may be noted that themaximum recursion levelis bounded by
the levels of logic and importantlythe memory requirementsfor
recursive learning are linear in terms of size of the circuit [4].
Furthermore, for certain types of circuits or given a fixed level
of recursion, the complexity is only polynomial. Also, recursive
learning isself-guidedin that the search is automatically guided
by the topology of the circuit to precisely those nodes that are
indirectly implied. BDD-based learning methods [12] require
simulation for guiding the search.

Let be the set of all nodes in the RC andthe set of all
nodes in the CUV, as shown in Fig. 1. We definesimilarity index
of a node ( ) is equal to number of nodes

( ), such that or . We will denote the
similarity index as . Consider for example the circuit shown in
Fig. 4, in particular, the output of node 3. The following indirect
implications exist which can be identified using level 1 recursive
learning [4]

3 in 3 in

3 in G 3 in

Thus, it can be seen that the node representing output of gate 3
in both circuits has a similarity index of 2.

Given a set of implications of the nodes of the circuits
and in a miter, we formulated the following framework for
the similar anddissimilar regions with respect to the implica-
tions. We definedissimilarregion as a group of connected nodes
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Fig. 4. Similarity profiles of example circuit pair.

TABLE I
NUMBER OF IMPLICATIONS PER NODE

USING RECURSIONLEVEL 1 (FIG. 3)

where all the nodes have zero similarity index, 0. Con-
versely, a group of connected nodes with forms asimilar
region.

Table I depicts similarity index of all nodes in and . It is
clear that the node 4 constitutes a dissimilar region. The set of
similarity indices for all nodes in the miter is called the simi-
larity profile.

Dissimilar regions are identified using a given level of recur-
sion in the recursive learning procedure. Therefore, it is always
possible that a region identified to be dissimilar using a partic-
ular level of recursion may be found to be similar at a higher
level of recursion. For the circuits in Fig. 3, with recursion level
of one, the value of 1 does not imply any value on. How-
ever, as we have seen above, given the maximum recursion level

. Therefore, given a recursion level of two,
and form a similar region.

B. Similarity Enhancing Transformations

The recursive learning analysis phase identifies logical rela-
tionships between nodes in the miter. These logical relationships
represented as implications are used to identify dissimilar re-
gions. Our first verification tool attempts to verify using these
implications. If it fails, then transformations are targeted on dis-
similar regions of the circuits, and designed to induce similarity
in these. These transformations are called similarity enhancing
transformations (SET).

TABLE II
NUMBER OF IMPLICATIONS PERNODE TO NODES IN THEOTHER CIRCUIT

AFTER TRANSFORMATION

Fig. 5. Similarity enhancing transformation in a miter.

Theorem 3.1:Consider two combinational circuits and
with their inputs tied, as shown in Fig. 5. Letbe a subfunction
in circuit and be a subfunction in circuit . The subfunction

in circuit can be replaced by: , where

if

if

if

if

Proof: Following, we present a proof for the first case.
Proofs for other cases are similar.It may be noted that the trans-
formation forces 1 whenever
1. This can be captured in

Performing Shannon expansion of the first term we have

yields
0, which is

equivalent to Q.E.D.
The equation can be interpreted as, if , a change

on cannot propagate to output. It also can be viewed
that when 1 the fault stuck-at-1 is undetectable. Both
conditions are equivalent. The former has been stated as a
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Fig. 6. Similarity enhancing transformations.

D-implication [11]. In essence, Boolean difference captures
this conditional undetectability.

There are four such basic transformations based on “simple”
conditions. Other transformations with NAND, NOR, or EXOR
gates require more complex Boolean difference formulation.
These basic s are shown with their corresponding
Boolean difference conditions in Fig. 6. Note that the condition
for any arbitrary can be derived as a combination
of above Boolean difference conditions. This formulation of
admissible transformations can be nicely implemented using
ATPG techniques, as seen below.

Since computing Boolean difference and checking its satisfi-
ability can be complex, we suggest following ATPG techniques.
Consider the case . Let the value assignment,

0, be a necessary assignment to tests-a-1; this implies
transformation is a permissible function of .
Checking for this is accomplished by first assuming a fault s-a-1
at a node , and then identifying thosenecessary assignments
that are required to detect this fault. A node for which

0 is a necessary assignment and, thus, a candidate for the
transformation . Whether this transformation is ac-
tually performed or not depends on certain heuristics.

1) SET Implementation:The following example illustrates
the generality of the SET conditions given in Theorem 3.1.
These capture not only controllability and observability im-
plications but also more general conditions for admissibility.
Controllability and observability implications are special cases
of this formulation of admissibility.

A SET can exist where neither a controllability implication
[4] nor an observability implication [11] exists. In this example,
the fault is excitable and observable separately, but it cannot be
excited and observed simultaneously. Importantly, the following
example illustrates that SETs are more powerful than controlla-
bility and observability implications treated independently.

Example 3.2:Fig. 7 shows the original subcircuit [21] and
the circuit to be verified in its nonredundant version. These cir-
cuits can be transformed as shown in Fig. 9. There exists a
Boolean difference condition which allows the SET shown in
Fig. 8. Fig. 7 shows how the equivalent undetectability condi-
tions, as explained above, are satisfied to allow this transfor-
mation. Fig. 7(a) shows the setting of values 1 and
0/1. The fault justifications and unique sensitization values are
shown in Fig. 7(b). The direct implications of the values in the

circuit demonstrate that there is a conflict between excitation
and observation conditions, as seen in Fig. 7(c). The conflict re-
flects that under the condition of , the fault 0/1 (s-a-1)
is undetectable .

2) Multiple SET Implementation:As seen above, a single
SET can be performed in isolation one at a time. For many cir-
cuits, to complete verification, one may need a large number of
SETs. However, multiple SETs cannot be performed simulta-
neously, unless they form a compatible set. This follows from
the well-known result that even if two stuck-at faults are unde-
tectable individually, they can be detectable as a multiple fault
[1]. Note that the order of choosing SETs is important. Certain
heuristics can be used to accept or discard a particular SETs de-
pending on certain cost-benefit function.

Given a set of single SETs, one can form a subset of compat-
ible SETs using fault-detection theory. These compatible SETs
can be performed in one step. However performing one SET at
a time checking for the admissibility each time poses no partic-
ular problem.

3) Effect of Transformations on Similarity Profile:A SET
can only be useful when it induces the needed amount of sim-
ilarity between the circuits. A series of SETs adds numerous
connections between the two circuits. Therefore heuristics [3]
are formulated to decide whether to accept or discard a partic-
ular SET and are briefly explained below.

A node, say , is selected which is in the dissimilar
region. A suitable has to be selected from a similar or dissim-
ilar region of . If the search fails to find a suitable, a new

is selected using certain heuristics [3]. These heuristics
are based on the similarity profile concept which has already
been explained. The similarity profile detects regions which are
dissimilar and hence a potential area for ATPG to have prob-
lems. In these dissimilar regions, absence of implications means
that the ATPG search is unguided and boils down to a brute
force enumeration of the search space. If this can be avoided, the
whole verification process can be speeded up. This can be done
by performing a transformation which structurally connects this
dissimilar region to a similar or dissimilar region. One or many
such transformations are performed. The line selected for trans-
formation always lies in the dissimilar region. The line to which
it is getting connected is either in a similar or a dissimilar region.
As a result of performing such SET(s), the dissimilar region be-
comes similar to some region in the RC.

We first try to find SETs proceeding from input to output and
then from output to input. The input to output process is the most
helpful one and propagates similarity through the circuit. How-
ever, the output to input flow is also useful, since it concentrates
on the outputs and any possible transformation near the outputs
is very helpful for the ATPG process.

The two examples below illustrate how SETs can induce sim-
ilarity and eliminate dissimilarity.

Example 3.3:Consider the SET connectingand in Fig. 8.
It shows that several new additional implications because of the
transformation. In fact this SET alone induces the final verifying
implications between nodes in and . This is illustrated fur-
ther in Fig. 9 which plots the similarity and dissimilarity regions.
Node 4 is outside the similarity region, but now it does not im-
pede the verification.
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Fig. 7. Justification of the fault in the example circuits.

The following example illustrates the case for multiple SETs.
Example 3.4:Consider c432 and o1_c432. Fig. 10 shows

the similarity profiles using recursion level 1 implications. Be-
cause o1_c432 was highly optimized by logic optimization with
testability (LOT) [19] and had a region of strong dissimilarity,
it needed 20 SETs. At this point, it became possible to verify
the circuits with implications derived using only level 1 impli-
cations. The similarity profiles of the circuits, after transforma-
tions, are shown in Fig. 11. Note that the region before the output
of o1_c432, which had a dissimilar region, is noweliminated
completelybecause of transformations.

We have not studied the effect of SETs on improving the sim-
ilarity profile theoretically. Our empirical experience shows that

they are very helpful. However, it is true that a SET might alter
all existing controllability implications in the transitive fanout
of the gate being transformed, i.e., nodein Fig. 8. However,
we expect new controllability implications to come into exis-
tence and this is why SETs are useful.

Also note that introduction of SETs actually enlarges the
circuit. Conventionally the complexity of the verification was
thought to be in some way proportional to the circuit size. Also
note that SETs are redundant logic in that they do not alter
the functionality of the circuit. This is also thought to effect
the ATPG process adversely. However, the whole miter is a
redundant circuit (if the circuits are functionally identical) and
any added redundancy will not be harmful if we ensure that it
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Fig. 8. New implications found after introducing a SET.

Fig. 9. Effect on similarity profile after a transformation.

Fig. 10. Similarity profiles for c432 and o1_c432.

helps the ATPG process. Using the heuristics in Section III-B3,
we ensure that each SET is useful to the ATPG process.

C. Equivalent Node Identification

Nodes in the two circuits might have equivalent functionality.
Though these are rarer than implications, they occur frequently
as some lines are not changed functionally. This might happen
if only modules were changed keeping inputs and outputs in-

Fig. 11. Effect on similarity profile after SETs.

tact. Another fact is that probable equivalent nodes can be easily
identified using simulation. Then they can be checked for equiv-
alence. In our approach, if verification using implications fails,
equivalences are tried. Often nodes not detected as equivalent
using implications can be detected to be equivalent by this ap-
proach as the effort is more directed. Moreover, it is a divide
and conquer approach where the task of proving equivalence of
the outputs is split into detecting some internal equivalent points
and then the final verification step is attempted.

The configuration used to identify equivalences is shown in
Fig. 12. Candidates to be tried for equivalence are determined by
random simulation. Also, only lines in the dissimilar regions and
those between the two circuits are used for equivalence identifi-
cation. The reason probable equivalent nodes are not interesting
is that implications already exist in those regions. The added
effort in those regions is probably a waste. Here, all probable
equivalent nodes need not be tested as all of them may not be
very useful for the verification process. Moreover, identifying
only selected equivalent nodes based on the similarity index is
not necessarily more difficult as it is done in a topologically
sorted manner. If the lines are identified as equivalent, the rela-
tion is stored as two-way controllability implication, for future
use.
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Fig. 12. Configuration to identify equivalent linesa andb in the miter.

We use parallel pattern logic simulation to identify probable
equivalent nodes. Initially we assume all nodes to be equiva-
lent to each other. Each parallel pattern vector simulated splits
the current set of equivalent node groups into smaller groups.
Hence it is a monotonic function. The number of random pat-
terns used is based on a differential function. The simulation
phase is stopped when the lastpatterns did not alter the cur-
rent set of equivalent node groups. The numbercan be a small
value like ten. This strategy is optimal in the sense that it simu-
lates till it is no longer useful.

After the set of probable equivalent node groups is detected in
the dissimilar region, the real equivalences are detected. This is
done in a topologically sorted manner. The reason is previously
detected equivalences in the input cone of the current probable
equivalence being tested, are recycled and help the process. So
this process starts from the edge of the dissimilar regions close
to the inputs and slowly moves to the end close to the outputs.
Starting from the edge closest to the input makes proving equiv-
alences easier and enables the algorithm to identify the region to
be actually similar. The controllability implications are reused.

The equivalence proving scheme is simple and is based on
configuration shown in Fig. 12. We put a s-a-0 fault on the output
of the EXOR and try to justify it using an ATPG process. Note
that this ATPG process makes use of the implications already
learned. The ATPG process is also resource bound and we give
up after a fixed time interval. We then move on to the next prob-
able equivalent pair.

D. The Algorithm

Our algorithm basically consists of three steps. First, the ver-
ification is attempted using earlier-known techniques of impli-
cations and equivalences [5], [6]. The next step involves identi-
fying implications and equivalent nodes in regions. If this fails
to verify the circuits, SETs are added in a guided manner. With
enhanced similarity, more implications and equivalences exist
which ease the verification process. The algorithm, as shown in
Fig. 13, uses similarity profile, SETs and equivalence identifica-
tion for verification. Three different verification modes are used
during the verification process.

• Verification mode 1: This verification mode uses impli-
cations and equivalences.

• Verification mode 2: This mode uses implications, as
well as equivalences identified in regions based on thesim-
ilarity profile.

Fig. 13. Flowchart of proposed verifier.

• Verification mode 3: This mode uses the implications,
equivalences, transformations based on using SETs in the
dissimilar regions, and equivalent node identification.

The procedure begins with theVerification mode 1, and
then switches to higher modes if the circuits are not verified.
Verification mode 3 is the strongest verification phase used
at a particular recursion level, as it uses SETs. After the three
verification modesare tried, the recursion level is incremented.
The implications learned in Phase 1 update thesimilarity profile,
this updated similarity profile is then used to guide the SET
procedure. The verification is attempted all over again with the
highest level of recursion.

The basic motivation in using SETs, is to transform dissim-
ilar regions to become more similar regions. The conditions
which allow SETs are more general than finding implications
and observability conditions. Our basic approach is to try to con-
nect a node in thedissimilar regionto a node in thesimilar or
dissimilar regionin the other circuit (as in Fig. 9). However,
after a connection is made, existing implications involving the
nodes in the transitive fanout of the new gate can get invalidated.
Therefore, validation of the stored implications after performing
SET(s) is necessary.

We try to introduce a fixed number (20) of SETs in each
pass (The “reducing dissimilarity by SETs” box in Fig. 13). The
number 20 is arbitary and a more optimal number may be found.
Note that we can add more than one SET sequentially, checking
for admissibility each time with an ATPG engine. The ATPG
engine takes into account the structural changes from previous
SETs. We have observed that changing the order of SETs can
affect the verification speed, but there is not fixed pattern that
can be used. Heuristics based on the number of SETs in a dis-
similar region have been found to be effective. New implications
induced by these SETs are discovered using the same recursion
level. These are stored and verification is attempted again.

It is possible to do more than one pass through mode 3 and
add a fixed number of SETs before increasing the recursion level
(mode 1). This strategy can be useful since SETs are more pow-
erful and less expensive than learning all implications.

It should be noted since dissimilar regions are identified using
a given recursion level, that it is always possible that a region
identified to be dissimilar using a particular level of recursion
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TABLE III
COMPARISON OFPROPOSEDMETHOD ON NON-REDUNCANT CIRCUITS

(TIMES ARE IN [mm : ss])

TABLE IV
COMPARISON OFPROPOSEDMETHOD ON SYNTHESIZED CIRCUITS

(TIMES ARE IN [mm : ss])

may be determined similar at a higher recursion level. There-
fore, each time we increase the recursion level, we re-examine
the dissimilar regions.

The algorithm is our way to use the concepts of implications,
equivalences and SETs together. This can be altered and may
yield better results. Our aim was to demonstrate the power of
the concept of SETs and we got very encouraging results with
this algorithm, as we show in the next section.

IV. RESULTS

First set of experiments was carried out on the ISCAS85
benchmark circuits [21]. These circuits were verified against
the nonredundant versions, as well as against LOT optimized
versions [19]. This tool LOT makes significant changes to
the circuits for testability, destroying much of the similarity.
The performance of our tool has been compared with a
OBDD-based verifier [22], and a hybrid method [5]. Results
are reported in Tables III and IV obtained on a Sun Sparc 5.

In Table III, it can be observed that all the circuits were ver-
ified using only level 1 of recursion. As expected, c7552 took
the longest time, of about only 7 min. This clearly demonstrates
the accelerating power of SETs proposed here.

Next, the LOT optimized version [19] of ISCAS85 circuits,
given in, was verified; the results are shown in Table IV. As be-
fore, it can be seen that our verification was significantly faster,
requiring only level 1 recursion. As stated before we are able to
limit the level of recursion to just one because of the SETs and,

TABLE V
COMPARISON OFPROPOSEDMETHOD ON SIS OPTIMIZED CIRCUITS USING

SCRIPT.RUGGED(TIMES ARE IN [mm : ss])

thus, producing a significant speed up. These experimental re-
sults signify that if the verification process can be completed in a
given recursion level without resorting to higher levels, it trans-
lates to an exponential gain in time. VERILAT clearly outper-
forms the other techniques, which demonstrates its capability.
As the circuits were very dissimilar both of the other techniques
OBDD [22] and Hybrid [5] failed. Regarding the number of
SETs applied, for c5315 we went through two passes of mode 3
(we tried to introduce SETs). For all other circuits,
we went through one pass of mode 3 and tried to introduce 20
SETs. For some circuits we found less than 20 desired number
of SETs at that recursive learning level. However, it should be
noted that the OBDD based verifier used for comparison is not
the best available; the latest BDD packages can verify more cir-
cuits. Note that the results using our tool is without any signifi-
cant performance tuning or any trial and error processes. Hence
there is room for further improvement of run times to some de-
gree. We were primarily interested in experimenting with the
algorithmic speedups.

Experiments on these benchmark circuits also provide the fol-
lowing insight. Circuits optimized using a large number of ob-
servability don’t care conditions may result in needing of large
number of SETs to overcome the dissimilarity.

VERILAT being oriented toward difficult-to-verify circuits,
should be used only after the other simpler approaches [2]–[8]
fail. Importantly, it has a stable performance over a wide variety
of circuits. Our procedure and underlying heuristics [3] seem
to provide maximum benefit for difficult-to-verify circuits with
little similarity with the reference circuit. No more than approxi-
mately 5 min was needed to verify any of the optimized circuits.

A. Additional Results

We have some additional results on ISCAS 85 benchmark
circuits optimized by SIS-1.2 [23] using thescript.rugged.
The results are shown in Table V. These are reported for
8 of the 10 ISCAS 85 benchmark circuits as we had some
difficulty in translating c2670 and c3540 to our format. The
results demonstrates that the proposed tool can easily verify
circuits altered/optimized by other synthesis tools. We obtained
similar results for circuits optimized usingalgebraic.scriptand
boolean.script, which was very encouraging. This proves that
the proposed method is robust over a wide variety of dissimilar
circuits.
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V. CONCLUSION

We have presented a new approach for formal logic verifica-
tion which is fundamentally different from previous approaches.
In the new technique, weincreasethe size of the circuit. The
similarity between the two circuits is progressively enhanced
by transformations. Similarity is measured in terms of number
of implications that exist between the nodes of the two circuits.
We perform transformations on those parts of the circuits that
are diagnosed as highly dissimilar so as to reduce the dissim-
ilarity. These admissible transformations are functionality-pre-
serving and based on certain Boolean difference formulations.
The dissimilarity reduction introduces new logical relationships
between the two circuits that did not previously exist. These two
steps are repeated in succession until the verification process is
complete. In our approach we have tried to deal with dissimi-
larity between circuits and SETs. To comment upon the relation-
ship of optimality of a circuit with dissimialrity and SETs, we
have not explored the relationship between number of possible
SETs and similarity between the circuits. Note that the number
of SETs reported in the results is the minimum required to verify
the circuits using our method. More dissimilar circuits would re-
quire more SETs, although it requires more effort to find them.
There is a proportional relationship between the effort to find
SETs and the dissimilarity between circuits. Optimality of the
circuits has no direct impact since we construct a miter of the
two circuits.

We think that algorithmically our approach is the strongest
in its’ ability to detect similarity between circuits as compared
to other existing approaches [5]–[7], [9], [10], [12]. Addition-
ally, the ability of the proposed method to enhance similarity
by performing transformations is novel. The concept presented
in this paper can be useful in accelerating verification frame-
works which rely on structural methods. The experimental re-
sults show the proposed method to be very efficient for dissim-
ilar circuits.
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