Boolean Satisfiability and Equivalence Checking
Using General Binary Decision Diagrams

Pranav Ashar, Abhijit Ghosh

Department of EECS
U. C. Berkeley

Abstract

We show how general Binary Decision Diagrams
(BDDs), i.e., BDDs where input variables are allowed to
appear multiple times along any path in the BDD, can
e used to check for Boolean satisfiability. Our satisfia-
bility checking strategy is based on an input smoothing
operation on general BDDs. We develop various input
smoothing strategies for general BDDs. In order to ver-
ify the equivalence of two functions fi and fa, we check
f1 &b f; for satisfiability.

Using general BDDs we were able to verify differ-
ent implementations of a 16 x 16 multiplier, a modified
Achilles-heel function and a complex add-shift function.
It was not possible to construct OBDDs for any of the
three functions.

1 Introduction

Reduced, ordered Binary Decision Diagrams (OBDDs)
[4] have gained widespread use in the areas of combina-
tional and sequential logic verification (e.g. {11] [7]) due
to their canonicality and easy manipulability.

Since OBDDs are a canonical form, verifying the
equivalence of two combinational logic functions in-
volves selecting a common input ordering for the two
circuits, constructing OBDDs for each of the circuits,
and checking to see if the two OBDDs are isomorphic.
Satisfiability checking simply corresponds to comparing
the OBDD of a given circuit, under any input ordering
to the constant 0 OBDD. .

Finding a good input ordering that produces OBDDs
of manageable size is a difficult problem and has re-
ceived considerable attention (e.g. [11, 10, 1]). How-
ever, there are classes of combinational circuits, notably
multipliers, for which OBDDs under any possible input
ordering have a provably exponential size [4]. Circuits
other than multipliers have also been encountered where
finding an input ordering to obtain an OBDD of man-
ageable size has not been possible so far. In fact, it is
casy to construct simple examples where OBDD sizes
grow exponentially with the number of inputs to the
example (cf. Section 5).

There has been some work in the generalization of
BDDs to verify larger classes of circuits. The method of
Friedman [9] uses pBDDs, where variables can appear
more than once along a path from the root to a leaf.
There are no guarantees about the size of the pBDDs for
a multiplier and equivalence checking is NP-complete.
Simonis [12] uses constraint logic programming to verify

259

Srinivas Devadas
Department of EECS
MIT, Cambridge

classes of multipliers but this method cannot be easily
generalized to circuits containing multipliers. Burch, in
[6], showed that the replication of inputs to a n xn mul-
tiplier to obtain a circuit with 2n? inputs would result in
a OBDD of O(n3) size under a high-to-low input order-
ing. However, correspondence between the replicated
inputs of the logic-level implementations of the circuits
that are being checked for equivalence is required. This
is not generally possible in a synthesis scenario, where
the logic may be restructured dramatically.

In this paper, we show how general BDDs, i.e., BDDs
where input variables are allowed to appear multiple
times along any path in the BDD, can be used to check
for Boolean satisfiability. We construct general BDDs
in the following manner. The inputs in a given circuit
n are first replicated to obtain a new circuit n’. After
choosing an appropriate ordering for the inputs to 7/, we
use OBDD construction algorithms to obtain a general
BDD for 7.

Our satisfiability checking strategy is based on an in-
put smoothing operation. After all the inputs have been
smoothed away, if the function reduces to a constant 1,
then it means that the original function was satisfiable.
In order to verify the equivalence of two functions, f;
and fo, we check f; @ f, for satisfiability. Various input
smoothing strategies are presented in this paper.

General BDDs are not a canonical form and are a
much more powerful representation than OBDDs. For
example, it has been shown that a general BDD of O(n?)
size can be constructed for a n x n multiplier [6]. Using
general BDDs we were able to verify different imple-
mentations of a 16 x 16 multiplier, a modified Achilles
heel function and a complex add-shift function. It was
not possible to construct OBDDs for any of the three
functions. The verification was carried out without re-
quiring any additional information, other than the given
logic-level descriptions. The use of general BDDs, as op-
posed to OBDDs, also dramatically reduces the memory
requirements to verify other classes of circuits.

For basic logic synthesis and BDD terminology, the
reader is referred to [3, 4]. Definitions of BDD opera-
tions can be found in [13]. In Section 2, we outline the
overall strategy toward satisfiability checking and com-
binational logic verification using general BDDs. Input
smoothing algorithms for general BDDs are presented
in Section 3. Input replication and ordering algorithms,
and some implementation details are discussed in Sec-
tion 4. Experimental results are presented in Section
5.

© %
£ X3,0 £
B %1
u u
(@ (b)

Figure 1: Example of Input Replication

2 Satisfiability and Equivalence
Checking

2.1 Satisfiability Checking

Given a logic circuit f to check for satisfiability, assume
that we cannot construct a manageable OBDD for f
due to memory or CPU time restrictions. In such a
case we replicate the inputs to f to obtain a different
circuit f’, keeping track of what inputs to f* are derived
from the same input to f. Replicating the inputs to an
example circuit is shown in Figure 1 where the input x5
in Figure 1(a) has been replicated to x30 and z3; in
Figure 1(b).

If we replicate enough inputs and find a good order-
ing of replicated inputs, we can use OBDD construction
algorithms [4] to construct an OBDD for f’, which can
be viewed as a general BDD, G, for the circuit f (if we
coalesce the replicated inputs). Note that the general
BDD is not a canonical form for the function f. For
example, function f may not be satisfiable, but G' may
be large.

We now sequentially smooth away the inputs to f
using its general BDD (the OBDD for f) as a base rep-
resentation. We pick an input to f, say x;. Assume that
x; has been replicated n times in f’, and say the repli-
cated inputs correspond to z;9, ..., ¥;,_1. We have
to smooth away the x;0, ..., z;,_1 inputs to f/ mak-
ing sure that they have the same values (0 or 1). The
smoothing of f by z; (whose replicated instances are
L0, «.. Tin-1), under the f’ representation, is defined
as:

el !
S-’L'xf - fwho'l‘l,l'“l’z,n—l

Essentially, we are cofactoring f’ with respect to the
cube corresponding to all the z; ;’s set to 1, and with
the cube corresponding to all the ;s set to 0 and
OR’ing the results.

As in [13] we can define:

Sef' = S ..

/
+ f Th,00T4,1 Ti,n—1

See

to sequentially smooth away the k sets of inputs to f7,
corresponding to the distinct inputs to f.

Our smoothing strategy can use highly efficient
OBDD manipulation algorithms. Input smoothing in
OBDDs can in general be performed efficiently [13]. In-
put smoothing under general BDD representations is
more complicated, and we discuss several strategies in
Section 3.

2.2 Equivalence Checking

In order to check for the equivalence of two logic func-
tions f1 and f,, we construct f; @ f5 as shown in Figure

260

i1<0>

il<a> &

12<0>

i2<n>

(a)

(®)
Figure 2: Equivalence Checking

2(a). We treat this composite function as our f func-
tion above, and replicate inputs as needed to construct
a general BDD for f. If necessary, we can break up the
inputs to fi and f; so they have disjoint support in f’
(Figure 2(b)). If OBDDs are constructible for f; and
fa, there is no need to use our technique to verify the
equivalence of f; and f;. Our technique, however, will
allow the further replication of the inputs to f;” and f,’
so a manageable-sized general BDD can be constructed
for f/, even in the case where OBDDs cannot be con-
structed for f; or fs.

3 Input Smoothing

3.1 A Branching Strategy for Smooth-

ing Replicated Inputs

While input smoothing in an OBDD is not guaranteed
to reduce the size of the OBDD, efficient algorithms
exist [13] that can smooth away a set of inputs in a
OBDD by making a single pass over the OBDD. Input
smoothing in general BDDs is more complicated, and
can increase the size of the general BDD.

In our experiments we found that, given a set of repli-
cated inputs to be smoothed, the order in which the in-
puts are smoothed can have a significant effect on the
resulting general BDD. Further, the size of a general
BDD that is obtained after smoothing away even a sin-
gle set of replicated inputs can be substantially larger
than the original BDD. In general, a massive replication
of inputs in a general BDD makes smoothing more diffi-
cult. This is intuitive, since the smoothed BDD will be
substantially different from the original general BDD.
We therefore devised the general branching algorithm
shown below, that operates in a depth-first manner.

In the routine satisfiable(), G is the general BDD,
and X is the set of inputs to be smoothed away in or-
der to check for satisfiability. Each z; € X consists of
Z;0, ..y Lip, replicated inputs.

satisfiable(G, X):
f(X=¢){

if (G =0) return(FALSE) ;
else return(TRUE) ;

zp, = select-input (G, X) ;

Compute G, ;

Compute Gz T Ty

if (G' = bdd-or (G.,, G+ parami)) {
return (satisfiable(¢/, X —z,)) ;

= ¥p,0°%p,1 " Tp,np !
.

’

}

else {
if (satisfiable(G.,, X — z,)) return(TRUE) ;
else if (satisfiable(
else return(FALSE) ;

P

The parameter parami controls the amount of
branching that can take place versus the size of the
smoothed BDDs, and can be set based on the amount of
memory available. During the bdd-or() operation the
size of the resulting BDD is monitored, and if its size
exceeds parami, the bdd-or() operation is terminated.
If the bdd-or() has to be terminated, branching on the
cofactors takes place. This ability to branch gives our
approach the capacity to trade off CPU time for mem-
ory usage.

The routine select-input() selects a set of replicated
inputs in the general BDD to be smoothed. Currently,
we use a simple heuristic that has to do with the fraction
of the general BDD that is affected by the smoothing.
Smoothing with respect to z; only affects the portion of
the general BDD below &; mipn, Where i min corresponds
to the replicated instance of z; that has the lowest index
(is closest to the root of the general BDD) among all the
replicated instances of z;. We select the input , such
that &, min has the maximum index among all ; min-

3.2 Smoothing Inputs Using Circuit

Transformations

3.2.1 Smoothing Unreplicated Inputs

In the case where unreplicated inputs exist in the gen-
eral BDD, it is possible to use the algorithm of [13]
to simultaneously smooth away these inputs. However,
the strategy may require too much CPU time or mem-
ory, especially if the other inputs have been extensively
replicated (cf. discussion at the end of this section).

A more efficient circuit-transformation-based strategy
is as follows. Given a general BDD, G, we derive a
multiplexor-based circuit 7 corresponding to G, by re-
placing all nodes in G' by 2-input multiplexors whose
control input is the decision variable corresponding to
the node. In 7, we replace all the multiplexors corre-
sponding to the unreplicated inputs by oRr ! gates to
obtain 7’. Now, we can choose an ordering for the re-
maining inputs to ’, (and coalesce replicated inputs if
necessary) to construct a new general BDD for 7/.

In a general BDD, we cannot simply replace each node
corresponding to an instance of a replicated input by
an OR gate. Doing so may make paths in the general
BDD corresponding to conflicting values for different
instances of a replicated variable sensitizable in the de-
rived circuit, thus destroying functionality. However, a
replicated input which does not appear more than once
along any path in the general BDD can be smoothed

! The use of complemented nodes {2} in a BDD makes this
transformation slightly more complicated. A process of pushing
the inversions all the way back to the terminal vertices while de-
riving the circuit is necessary, and the derived circuit can be twice
as large as the original BDD.

Gs, X — 7)) return(TRUE) ;

261

away by replacing all its nodes by OR gates in the de-
rived circuit.

This technique can perform significantly better than a
straightforward smoothing algorithm because of the de-
gree of freedom in choosing a different replication and
ordering for the general BDD of 7. For example, assume
that the variable z (with f being the function associ-
ated with its BDD node) is being smoothed. Straight-
forward smoothing within the BDD forces the BDD for
f: + Jf& to be constructed under a global variable-
ordering that is suitable for f, and fz but not neces-
sarily for f, + fs, leading to a much larger BDD after
smoothing. While this problem is usually not encoun-
tered in the case where no replicated inputs are present,
it assumes great significance when they are.

We can use the above technique iteratively. When
constructing the general BDD for 7/, we can leave some
inputs unreplicated, and then obtain a circuit 5’ with
these inputs smoothed away using the oOR-gate transfor-
mation. If a large number of inputs are smoothed away,
it is possible that a OBDD will be constructible for 7’
or 1", simply by coalescing all the replicated inputs.

3.2.2 Smoothing Replicated Inputs

Smoothing replicated inputs in a general BDD via a
circuit transformational method is more complicated.
In the case of replicated inputs appearing several times
along a path we can use the following strategy. As-
sume we have a general BDD G, and the input z; has
been replicated k times, the replicated instances being
Ti0, L3y -y Lik—1. We now wish to transform G into
G’ so that all paths in G’ that correspond to conflict-
ing values for the different instances of the replicated
variable z; have zero-terminal vertices. Other than this
modification, G’ has the same functionality as G. We
first obtain G from G by making all the paths in G
that correspond to a zero value for any of the replicated
instances of z; have zero-terminal vertices. Similarly,
we obtain G5 from G by making all the paths in G that
correspond to a one value for any of the replicated in-
stances of z; have zero-terminal vertices. The or of G'1
and G2 satisfies the property required of G'. We can
now obtain a circuit from G’ by replacing all the nodes
in the G’ corresponding to the replicated instances of
the variable z; by OR gates and all the other nodes by
2-input multiplexors. The replicated primary input z;
has effectively been smoothed away in this derived cir-
cuit. We can now reconstruct a (possibly general) BDD
from the derived circuit after picking an ordering for the
remaining variables.

Note that the above strategy requires path enumer-
ation in the BDD and can rapidly become inefficient if
the replicated instances of an input are widely separated
in the global variable ordering.

3.3 Hybrid Strategies

At any given point while using the circuit transforma-
tional approach, the branching strategy can be invoked
to check the current general BDD for satisfiability. Sim-
ilarly, while using the branching method, after cofactor-
ing some inputs, the circuit transformational method
can be applied to smooth away the remaining inputs.

S¢n-1:0> sa-1>

Ban-1> ADSBen-1> &
Aaa-2>

Ben-1:0> ADSB

(@)

Ace-1:0> Ban-1:0> ABSB o o T

Addar Block
SuM

ADSB<O>

(b)

Cout cin

A<O>

Bt Ach> 3<0> ADSB<O>

Figure 3: Two Versions of the Adder-Subtractor
4 Input Replication & Ordering

4.1 Static Input Replication and Order-
ing

4.1.1 Replication By Fanout Splitting

In many cases, OBDDs are completely different struc-
turally and much larger than the circuit itself. In
such cases, the use of appropriately constructed general
BDDs can lead to graphs that are significantly smaller
than the OBDDs and are structurally closer to the cir-
cuit.

The goal of attempting to make the BDD-based cir-
cuit structurally as close to the given circuit as possible
guides the static replication and ordering of the inputs,
under the fanout splitting method. This is best illus-
trated with an example.

Consider the adder-subtractor circuit shown in Fig-
ure 3. Figure 3(a) shows an area-inefficient implementa-
tion in which two distinct blocks are used for addition
and subtraction. The desired output is then selected
by the output multiplexor based on the value of the
ADSB line. This is exactly the structure of the OBDD
that would be obtained if the ADSB input were at the
root of the OBDD. The area-optimum implementation
of the adder-subtractor on the other hand is shown
in Figure 3(b). This circuit is much smaller than and
structurally different from the circuit in Figure 3(a). A
general BDD whose structure is close to that of Fig-
ure 3(b) can be derived in the following manner:

1. ADSB is replicated n times, where n is the bit-
width. The replicated ADSB lines are labeled so
that ADSB< i > corresponds to the fanout path
from ADSB that is XoR’ed with B< ¢ > in Fig-
ure 3(b).

2. An OBDD is constructed with the ordering B<
n—1>, ADSB<n—1>,A<n—-1>,B< n-2>,
ADSB<n—-2>, A< n—2>, ---, B<O0 >,
ADSB< 0 >, A< 0 >. The general BDD with
the replicated inputs in the OBDD coalesced will

have the same structure as the circuit of Figure
3(b).

The example of the adder-subtractor circuit leads
us to a general procedure for replicating and ordering

262

Aaba-l>
Aabab g

A<o-1><n-2>
Aw bz)
A Adm-1>

Acn-1><0>

Aco-1> ol

7 rmbal

AN o e

—* A [B Am D@D
AEDND

3 t

A DD

¢ Aam-2>
Ao

Avaty
—
Ao,
" Ad>
TN

(@) (b)
Figure 4: A Circuit with a Block Structure and
Its Replication

inputs. To begin with, a possibly area-optimized ver-
sion of the circuit is obtained to guide the replication.
In the optimized circuit, an input with a large depth
(where depth is defined as the number of gates between
the input and the primary output) and which fans out
multiple times so that each fanout path is used at differ-
ent depths in the circuit is a good candidate for replica-
tion (The ADSB input in the adder-subtractor sat-
isfies these requirements). Such an input is replicated
as many times as it fans out. Once all inputs deemed
to be good candidates are replicated, either the ordering
strategy of [11] or some other strategy dependent on the
circuit structure can be used to construct the OBDD.
When a large number of inputs have been replicated, the
circuit tends to assume the form described in Lemma 1
of [11] wherein the output f can be expressed as f
91 91(f2s 92(.egr—1(frs Jra1)..))) and each f; has a
support that is disjoint from the others. In such a case,
the optimum ordering for f is the concatenation of the
optimum orderings for the f;’s. The orderings for the
fi’s can either be concatenated in the order from k + 1
to 1 or from 1 to k + 1 depending on the circuit.

Burch in [6] used the fanout splitting method to ob-
tain a general BDD of O(n3) size for a n x n paral-
lel multiplier, under a particular ordering that required
functional as well as topological information. Unfor-
tunately, we have found that changing the ordering
slightly can result in a substantially larger general BDD.
Given 16 x 16 multiplier circuits, that were run through
intensive logic optimization, we were unable to create
general BDDs for these circuits using static fanout split-
ting and input ordering.

4.1.2 Replicating Logic Subfunctions

A strategy that works well for multiplier circuits and
circuits which have a block structure is to replicate entire
logic blocks in the circuit along with their inputs.
Consider the circuit structure of Figure 4(a). All the
primary inputs to the circuit feed the first block A. The
outputs of A feed block B. It is possible that OBDD
representations are constructible for A and B in isola-
tion, but not for A — B. The fanout splitting method
typically fails to construct a general BDD for A — B,
because it does not simplify the interactions between
the outputs of A within block B. This will especially

¥3 Y2 Y1 Yo

sun
Full Adder
/g/

27 86 25 %4 %3 22 21 20

(L LA
i “

P78y
1

B

X3

@ ¢)

Figure 5: A 4 x 4 Multiplier

he the case when each input to A fans out to few gates.

It is possible to create a general BDD for the cir-
cuit above using the replication shown in Figure 4(b).
Fach output of A has been implemented as a separate
function, with disjoint support from the other outputs
of A. We can choose good orderings for each set of
inputs to A < 0 > through A < m —1 >, namely
A<0><n—-1:0>through A <m—1><n-1:0>.
In order to obtain a small-sized general BDD for the
replicated circuit of Figure 4(b), we have to keep each
set of inputs A < ¢ >< n—1:0 > contiguous in the
global ordering for the replicated circuit.

A 4 x 4 multiplier is shown in Figure 5. One way
of creating a general BDD for a n x n multiplier is to
partition the circuit into two circuits A and B, where
A corresponds to the AND gate row plus the first & — 1
adder rows, and B to the remaining % adder rows. It
is possible to create a reasonable-sized general BDD by
replicating each output of A to be a separate function
with disjoint support from the other outputs (as illus-
trated in Figure 4), if n < 16. For larger multipliers
it is necessary to partition the circuit into 3 or more
subcircuits.

4.2 Dynamic Input Replication and Or-
dering

We briefly describe a dynamic input replication.and or-
dering strategy that can perform both fanout splitting
and logic subfunction replication in a uniform way.

We begin with a circuit where all the inputs are un-
replicated. Beginning from the primary inputs of the
circuit, we traverse the circuit in breadth-first manner
constructing BDDs for each intermediate line or gate.
At any given point of time, we have two BDDs for
logic subfunctions f1 and f;, and we are constructing
a BDD representation for fi < op > fa (< op >
could be an arbitrary Boolean operator over two vari-
ables). We monitor the size of fy < op > fy dw-
ing the apply [4] operation. If [|f1 < op > faol| >
param2 x (||f1l|+ ||f2]|), we replicate the inputs to f
and [y such that they are disjoint, and order the repli-
cated inputs such that the inputs to f; follow those of
f1, or vice-versa. Under this replication and ordering,
W <op> Al = [IF I+ 112

The parameter param2 trades off the amount of repli-
calion against the size of the resulting general BDD. If

263

I EXAMPLE | #I | #0 | OP# GBDD
Time' | Size |
ach3?2 64 1 1 61s 7073
add-shift32 64 32 31 123s 10721
15 80s o089
ach-parity32 64 1 1 91s 7853
mult16 32 64 31 216m 15246
15 olm 894

! In minutes on a IBM 6000 Model 320

Table 1: Equivalence Checking Applied to Combi-
national Circuits Not Amenable to OBDD Rep-
resentation

f2 happens to be a primary input that is also an in-
put to f1, then fanout splitting could occur during this
dynamic replication. In general, f; and f; could be arbi-
trary logic subfunctions, whose support is made disjoint
by replication.

5 Experimental Results

The viability of our approach is illustrated by the
results shown in Table 1 for several examples. The sig-
nificance of the results lies in that a canonical represen-
tation in the form of an OBDD could not be obtained
for any of the functions and that none of the circuits are
collapsible into two levels of logic. Therefore, our ap-
proach is a viable approach for verifying these circuits,
without requiring additional information other than the
given logic-level descriptions.

In Table 1, #I and #0O correspond to the total num-
ber of inputs and outputs in the circuits, respectively.
OP# corresponds to the number of the output for the
equivalence checking of which data is provided in the
table. The CPU time (Time) involved in the equiva-
lence checking are provided in the table for our approach
(GBDD). The CPU time includes the time for creating
the general BDD as well as for smoothing the variables.
The size (in terms of the number of nodes in the graph)
of the general BDD corresponding to the XOR of the
two functions being verified is provided under the col-
umn Size.

ach32 in
Table 1 is a single-output modified 32-bit Achilles-heel
function. The following equation describes the circuit.

f = Tumg - muzy - Muzz + murs - muzg - fo +
Muze - MUL] + Muly - muzs - muig © f1 + ...
+ muzg -+ MuLy - MuUTy + MuUT3 - Muzs - f33 where
the f; are defined as follows:
fo = @o.% + T1.Y1 - T3 YN
31
fiv 1<i<32 = H (13] + Y(§+i) mod 31)
j=0

It can be shown using the theory developed in [5] that
any OBDD (under any possible ordering) for a n-bit
modified Achilles heel function requires O(2%) vertices
[8]. This is because each f; requires a different ordering
for its inputs for a reasonable-sized OBDD represen-
tation. The replication of the primary inputs for this

function, on the other hand, makes the support for the
various f; disjoint and therefore allows the variable or-
derings for the f; to be effectively independent. While
equivalence checking using our approach can be done in
about a minute, it cannot be done by any other cur-
rently available method. Note that f has been cho-
sen so that neither f nor f is collapsible to a two-level
sum-of-products representation. Both the circuit trans-
formational and branching approach to smoothing suc-
cessfully completed in about a minute, after a static
replication and ordering of inputs using fanout splitting
was applied to the circuits.

The second circuit in Table 1 is add-shift32. This
circuit is similar in nature to ach32. It performs one
of 32 functions based on the muz control signals. The
output of the circuit is equal to the arithmetic addi-
tion of the input A and the the input B rotated by an
amount given by the mux signals. For reasons similar
to those for ach32, an OBDD cannot be built for this
circuit. Also, this circuit is not collapsible to two lev-
els of logic since it involves arithmetic operations. QOur
approach, on the other hand, is able to perform equiv-
alence checking for the most complex output in 2 min-
utes. The remaining outputs all required fewer times.
Again, after static replication using fanout splitting was
applied, both the circuit transformational and branch-
ing approaches were successful (and comparable in CPU
time usage).

The third circuit ach-parity32 corresponds to the
function fo® f1 D -+ & f31, with the f;’s the same as
those in ach32.

We have been able to verify different implementations
of a 16 x 16 multiplier, using static replication with logic
subfunction replication (with either the circuit trans-
formational or the branching method), as described in
Section 4.1.2. We verified the C6288 ISCAS-85 bench-
mark against a hand-crafted multiplier whose basic cell
was implemented differently from C6288. We also veri-
fied an optimized version of C6288 against the original
— the run-time differences were negligible from those in
Table 1.

We are currently implementing the dynamic replica-
tion and ordering strategy to provide a unified method
of general BDD-based logic verification.

6 Conclusions

We have shown that a representation of logic functions,
namely general Binary Decision Diagrams (BDDs), can
be used in conjunction with efficient ordered Binary De-
cision Diagram (OBDD) manipulation algorithms, to
check the satisfiability of, and verify combinational logic
circuits that were not verifiable using previous tech-
niques. In particular, we were able to verify large
and complex arithmetic functions, for which sum-of-
products or OBDD representations could not be con-
structed.

Future work will address improving the efficiency of
the input smoothing operation on general BDDs, and
the replication/ordering of inputs.

264

7 Acknowledgments

Discussions with Richard Newton on logic verification are
acknowledged. This work was supported in part by the De-
fense Advanced Research Projects Agency under contract
N00014-87-K-0825, and in part by a grant from Analog De-
vices, Inc. An equipment grant from IBM corporation is
gratefully acknowledged.

References

f1] C. L. Berman. Ordered Binary Decision Diagrams and
Circuit Structure. In Proceedings of the Int'l Conference
on Computer Design: VLSI in Computers, pages 392
395, October 1989.

K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient

Implementation of a BDD Package. In Proc. of 27" De-
sign Automation Conference, pages 40-45, June 1990.

R. K. Brayton, G. D. Hachtel, C. McMullen. and
A. Sangiovanni-Vincentelll. Logic Minimization Algo-
rithms for VLSI Synthesis. Kluwer Academic Publish-
ers, 1984.

R. Bryant. Graph-Based Algorithms for Boolean Func-
tion Manipulation. In I[EEE Transactions on Comput-
ers, volume C-35, pages 677-691, August 1986.

R. Bryant. On the Complexity of VLSI Implementa-
tions and Graph Representations of Boolean Functions
with Application to Integer Multiplication. In IEEE
Transactions on Computers, pages 205-213, February
1991.

J. Burch. Using BDDs to Verify Multipliers. In Proceed-

ings of 1991 International Workshop on Formal Meth-
ods in VLSI Design, January 1991.

O. Coudert, C. Berthet, and J. C. Madre. Verifica-
tion of Sequential Machines Using Boolean Functional
Vectors. In IMEC-IFIP Int'l Workshop on Applied For-
mal Methods for Correct VLSI Design, pages 111-128,
November 1989.

S. Devadas. Comparing Two-Level and Ordered Binary
Decision Diagram Representations of Logic Functions.
In MIT Technical Report (available from the author),
June 1991.

S. Friedman. Data Structures for Formal Verification
of Circuit Designs. In Ph.D thesis, Department of
Computer Science, Princeton University, January 1990.
Technical Report CS-TR-236-90.

M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and
Improvements of Boolean Comparison Method Based
on Binary Decision Diagrams. In Proceedings of the
Int’l Conference on Computer-Aided Design, pages 2—
5, November 1988.

S. Malik, A. R. Wang, R. Brayton, and A. Sangiovanni-
Vincentelli. Logic Verification using Binary Decision Di-
agrams in a Logic Synthesis Environment. In Proceed-
ings of the Int’l Conference on Computer-Aided Design,
pages 6-9, November 1988.

(2]

[10

=

(11]

[12] H. Simonis. Formal Verification of Multipliers. In
Proceedings of 1991 International Workshop on Formal

Methods in VLSI Design, January 1991.

H. Touati, H. Savoj, B. Lin, R. K. Brayton. and

A. Sangiovanni-Vincentelli. Implicit State Enumeration
of Finite State Machines Using BDD’s. In Proc. of Int'l
Conference on Computer-Aided Design, pages 130-133,
November 1990.

(13]

