
1

Design Verification

Lecture 17 - Model Checking II

1. Ad-hoc model checking approach Example 1

PS NS

x=0 x=1

A B D

B A B

C D A

D D C

2. Model checking using CTL

Some sample CTL formulas to be checked:

• EX((a = 1) ∧ (b = 1))

• E((a = 1)U(b = 1))

• EG((a = 1) ∧ (b = 1))

→ The formal basis for proving a formula holds in a temporal structure is fix-

point characterization of temporal operators. Alternatively, given a formula
φ, determine all states that satisfy φ.

→ Every operator of the propositional temporal logic can be formally defined

by a fixpoint equation. The idea is to split the formalization into two parts. In
the first part, we only make propositions with regard to the actual state, and

the second part makes propositions on the immediate successor states, using AX
and EX.

2 Design Verification Lecture 17

For example, AGφ = φ∧AX(AGφ). In other words, AGφ says that φ must hold
in the current state, and all successor states this formula AGφ must hold again

and again.

Model-Checking fixpoint functions:

• atomic functions check af(a): if the atomic formula a is qi = 0, then return
all states whose output qi = 0.

• check EX(A): A is a set of states.

Z = {s | ∃a transition under which s goes to some state in A}
Returns all predecessor states in A. In other words, these are the states for
which there is a single transition that takes the FSM to a state in A.

• check EU(A,B): (checking for E (φ1Uφ2)). Both A and B are sets of states;
A is the set that satisfies φ1, and B is the set that satisfies φ2. The resulting

set is built iteratively:

Z0 = B

Z1 = Z0
⋃
(A

⋂
check EX(Z0))

Z2 = Z1
⋃
(A

⋂
check EX(Z1))

...

Zk = Zk−1
⋃
(A

⋂
check EX(Zk−1))

Will this ever converge?

→ Yes, since for all k, although Zk ⊆ Zk+1, but because there are finitely
many states, we must have some point where Zk+1 = Zk. Worst case is Zk

containing all of S.

• check EG(A): (checking for EG φ) A is a set of states. Again we compute

this iteratively:

Z0 = A

Z1 = Z0
⋂
check EX(Z0)

Z2 = Z1
⋂
check EX(Z1)

...

Zk = Zk−1
⋂
check EX(Zk−1)

Will this converge? → Use similar analogy as before. Essentially, check EG

is based on decomposing the graph into strongly connected components
(SCCs), where SCCs are non-trivial (eg. more than 1 node).

• How about computing check AX, check AG, etc?

→ recall that Aφ↔ ¬E(¬φ)

M. Hsiao 3

Example 2

Example 3

4 Design Verification Lecture 17

Example 4

3. Complexity of check functions: (assuming there are n states and m edges

(a) atomic formula: O(m)

(b) ¬φ: O(n)

(c) (φ1 ∧ φ2): O(n)

(d) EXφ: O(m)

(e) Eφ1Uφ2: O(m)

(f) EGφ: O(n×m)

The complexities look fine, but if the STG size is exponentially large (240 states),
and if it takes 2−10 seconds per states, then it would still require 230 seconds or

millions of hours!

Solution: Use efficient methods to represent a Boolean function, such as OBDD’s.

4. Remark: counter-example given if property not satisfied. (state where property
violated is found)

M. Hsiao 5

5. Fair CTL

→ A fair temporal structure is a temporal structure (S,R, L) containing some

sets Bi ⊆ S: M = (S,R, L,B1, ..., Bn)

Given a fair structure, then a path ψ is called fair with regard to the fairness
constraints Bi, if it holds that ∀Bi, Bi

⋂
{s|s is visited infinitely often} 6= ∅.

Alternatively, a fair path visits at least one state of each set Bi infinitely often.
And usually, the sets Bi are not given explicitly by state sets by implicitly by

fairness constraints ξi, specified in CTL. Thus, Bi = {s|s |= ξi}.

6. Model Checking with Fairness constraints

A formula EXφ with fairness constraints ξi is true in a state s, if and only if

there exists an immediate successor state s′ such that s′ |= φ and s′ is the starting
state of a fair path involving ξi.

Example 5

Thus, check Fair EX(A) = check EX(A ∧ Sfair), where each state in Sfair is a

starting state of a fair path.

But how do we compute Sfair given a CTL formula φ and a set of fairness
constraints {ξ0, ξ1, ..., ξn}?

→ find states which lie at the beginning of infinite paths satisfying the fairness
constraints that also are found wholly in A:

• Let A = set of states that satisfies φ. Again, we can build Sfair iteratively,

for all i’s (for all constraints):

Z0 = A

Z1 = Z0
⋂
check EX(check EU(A,Z0

⋂
ξi))

Z2 = Z1
⋂
check EX(check EU(A,Z1

⋂
ξi))

...
Zk = Zk−1

⋂
check EX(check EU(A,Zk−1

⋂
ξi))

6 Design Verification Lecture 17

Interestingly, computing Sfair is the same as computing check Fair EG(A,B),
where B is the set of fairness constraints. i.e., Sfair = check Fair EG(A,B),

where A = set of states satisfying formula φ, and B = set of fairness constraints
ξi’s.

Finally, computing E(φUψ) with fairness can be done analogously:

check Fair EU(A,B): A is the set that satisfies φ, and B is the set that satisfies
ψ.

→ check Fair EU(A,B) = check EU(A,B
⋂
Sfair)

7. LTL checking method

• Since A ψ ≡ ¬E¬ψ, we just need to check for E f , where f is a path formula

along linear temporal tree

• basic idea: convert an LTL formula to a state diagram and check for infinite
paths containing the property

8. state machine conversion: tableaux method

• splitting rules for propositional formulas:

7−→ φ = φ1 ∧ φ2, tableau node = {φ1, φ2} 7−→ φ = φ1 ∨ φ2, tableau node =
{φ1}, {φ2}

• splitting rules for temporal formulas:
Recall from fixed-points, we have:

φ1 U φ2 ≡ fpmin(Z, φ2 ∨ (φ1 ∧XZ))
F φ ≡ true U φ

G φ ≡ fpmax(Z, φ ∧X(G φ))
Thus, for φ1 U φ2, tableau = {φ2}, {φ1 ∧X(φ1 U φ2)}

• for X φ, a successor tableau node is formed with only φ

• Note: a new node is added if it has not been created before

Example 6

M. Hsiao 7

Example 7

Example 8

Example 9

8 Design Verification Lecture 17

Example 10

