Design Verification

Lecture 11 - Sequential Logic Verification I

1. FSM Design Flow: (1)Specification \rightarrow (2) State Minimization \rightarrow (3) State Encoding \rightarrow (4) Logic Optimization

We may need to verify circuits between any two steps of synthesis

- State Minimization: minimize # states & transitions in state transition graph (STG)
- State Encoding: will affect # literals in logic optimization.
 - (a) minimize # product terms in 2-level representation for combinational logic, \mathbf{OR}
 - (b) minimize dependence among state variables \rightarrow in turn, will affect # literals
 - (c) estimate cost in multi-level representation
- 2. Views of FSM

- 3. Formal FSM Model & Notation: 6-tuple $\langle I, S, \delta, S_0, O, \lambda \rangle$
 - I: Inputs
 - S: Finite set of states
 - $\delta: S \times I \to S$ (next state function)
 - S_0 : set of initial states
 - O: Outputs
 - λ : output function
 - (1) $S \times I \to O$: Mealy machine
 - (2) $S \rightarrow O$: Moore machine

- 4. Define: 2 states s₁ and s₂ are distinguishable if ∃ a sequence T such that λ₁(s₁, T) ≠ λ₂(s₂, T). In other words, output sequences of applying T to the 2 states differ. The sequence T is called a distinguishing sequence for (s₁, s₂).
 → If distinguishing sequence exists, worst-case/longest distinguishing sequence length |T| = |S|.
- 5. If no distinguishing sequence exists for (s_1, s_2) , then the state pair (s_1, s_2) is said to be an *equivalent state pair*. Stated differently, $s_1 \& s_2$ are equivalent iff each input sequence starting from s_1 yields an output sequence identical to that attained by starting from s_2 , for all possible & legal input sequences.
- 6. Define: Reset equivalence: 2 sequential circuits, C_1 and C_2 , with external reset signals are reset equivalent iff (s_1, s_2) are equivalent, where s_1 is the reset state of C_1 , and s_2 is the reset state of C_2 .
- 7. Identify state equivalence:
 - Naive Algorithm

```
for each pair (s_1, s_2) in FSM
simulate (s_1, T_i) and (s_2, T_i) for all possible & different input sequence T_i
if (output sequence differ)
mark (s_1, s_2) non-equivalent
```

• Unmarked pairs are equivalent! Simply FSM accordingly. Example 1

- 8. More on state equivalence:
 - 2 states are equivalent iff they are *n*-equivalent, n = |S|.
 - 2 states s_1 , s_2 are k-equivalent $(s_1 \equiv_k s_2)$ iff $\not\exists$ a distinguishing sequence of length k or less for $s_1 \& s_2$.
 - 1-equivalence: examining the outputs of state transitions of states s_1 & s_2
 - k-equivalence: iteratively determine (k-1)-equivalences.

Example 2

Example 3: Moore Machine (very similar to previous Mealy Machine)

- 9. Alternative for completely specified FSM: verify by reducing FSM Complexity $= O(N \ lg \ N), \ N = \#$ states (instead of checking for reset equivalence)
 - Given 2 STG's G₁ and G₂ (both completely specified) if starting/reset states s₁ ∈ G₁, s₂ ∈ G₂ given
 → Reduce G₁ to G'₁, G₂ to G'₂
 if |G'₁| ≠ |G'₂|, then they are not equivalent else check isomorphism/equivalence with (s₁, s₂) as the starting pair
- 10. The above techniques may be expensive for circuits with large number of states. \mapsto Need to enumerate states until the reset states are distinguished. Worst case: need complete reachable state space

 \mapsto Alternative is to use ATPG to detect the miter output fault, with constraint added for the stopping criteria (don't need to backtrace to all-unknown state). ATPG for the target fault may be exponential in complexity as well.

- 11. For circuits without reset (still completely specified FSM)
 - Given 2 STG's G₁ and G₂ (both completely specified)
 → Reduce G₁ to G'₁, G₂ to G'₂
 if |G'₁| ≠ |G'₂|, then they are not equivalent
 else
 → concatenate G'₁, G'₂ to get G₃
 → reduce G₃ to G'₃
 → equivalent(G₁, G₂) iff |G'₃| ≡ |G'₁|
- 12. For incompletely specified circuits without reset

 \rightarrow Reduced STG's are NOT canonical!!

- There may exist 2 or more irredundant STG's of different size for the same STG
- This is due to compatibility issues

Example 4

- 13. For circuits without reset (FSM may not be completely specified)
 - different notions of equivalences possible
 - 0. classical FSM equivalence: for every state in one circuit, there is an equivalent state in the other, and vice versa. Computationally expensive.
 - 1. sequential hardware equivalence (SHE): two designs have equivalent behavior after synchronization of the circuits via an aligning sequence
 → an aligning sequence T_a is a sequence that takes M₁ to s₁ and M₂ to s₂ such that (s₁, s₂) is an equivalent state pair
 - 2. safe replacement equivalence: stronger than SHE, as one circuit can replace another, and vice versa:

 \mapsto if for any state $s_j \in M_2$, there exists a state $s_i \in M_1$ that can produce the same output sequence for any input sequence T applied. Then, M_2 is a safe replacement for M_1 .

• 3. three-valued equivalence: relaxed version of safe replaceability but stronger than SHE

 $\mapsto \lambda_1(uuu, T) \equiv \lambda_2(uuu, T)$ for any vector sequence T. In other words, outputs must match (they must belong to (0,0), (1,1), or (x, x), i.e., even for don't-cares. But if the output is don't-care (from an initial unknown state), we only need to make sure the other circuit also produces don't-care.

• 4. delay replacement equivalence: relaxed version of safe replaceability but strong than SHE.

 \mapsto If for any state $s_j \in M_2$, there exists a state $s_i \in M_1$ that can produce the same output sequence for any input sequence T, after n clock cycles in M_2 , then M_2 is a delay replacement for M_1 . Essentially, it is like safe replacement allowing for an n cycle delay version of the implementation.

14. Relationship among different notions of sequential equivalence

- M. Hsiao
- 15. Define: a *synchronizing sequence* is an input vector sequence that can bring the machine to a unique state from any state.
- 16. Define: an *initialization sequence* is a synchronizing sequence that can be verified by 3-value simulation (i.e., $\delta(uuu, T) = s_1$ when T is an initialization sequence under 3-value simulation) \mapsto an initialization sequence is also a synchronizing sequence, but not vice versa
- 17. Define: two states s_0 and s_1 are *alignable* if \exists a sequence T such that $\delta(s_0, T) \equiv \delta(s_1, T)$. (states reached after application of T are equivalent. \mapsto a universal alignment sequence T_a : $\delta(s_0, T_a) \equiv \delta(s_1, T_a) \forall (s_0, s_1)$.
- 18. Define: Terminal Strongly Connected Component (TSCC): a SCC that does not have any outgoing edges

- 19. Post-synchronized reachable state space is a TSCC
- 20. Reset Equivalence
 - Possible Algorithm:
 - Let T_1 and T_2 be the synchronizing/initialization sequences for C_1 and C_2 respectively. Note that the concatenation $T_1 \cdot T_2$ is also a synchronizing/initialization sequence. Let the states reached by T_1T_2 be s_1 and s_2 in C_1 and C_2 , respectively.
 - C_1 and C_2 are sequential hardware equivalent iff (s_1, s_2) is an equivalent state pair (i.e., $T_1 \cdot T_2$ is a universal alignment sequence)
 - What if sync sequences do not exist? Need to find the aligning sequence. \mapsto need to find an equivalent state pair (s_1, s_2) such that both states are reachable in their respective circuits

- 21. Theorem: Two circuits are SHE iff all state pairs are alignable [Pixley 92]
- 22. Corollary: Two circuits are SHE iff there exists a universal alignment sequence
 - Possible Algorithm:
 - first find a set of equivalent state pairs S_{\equiv} .
 - compute the preimage (all states that can reach) of S_{\equiv} .
 - if the preimage is the universe of all states in the product machine, then the two circuits are SHE.
 - In fact, if the preimage contains any reachable state in the miter, then the two circuits are SHE!
- 23. Safe Replacement

- 24. Delay Replacement
 - With initial states of the 2 circuits in the miter unconstrained, check if it is possible to produce a 1 at the XOR miter output after k clock cycles

25. For all notions of sequential equivalence, the problem boils down to determining if a state pair is an equivalent state pair. Future lectures!!