
1

Design Verification

Lecture 11 - Sequential Logic Verification I

1. FSM Design Flow: (1)Specification → (2) State Minimization →
(3) State Encoding → (4) Logic Optimization

We may need to verify circuits between any two steps of synthesis

• State Minimization: minimize # states & transitions in state transition
graph (STG)

• State Encoding: will affect # literals in logic optimization.

(a) minimize # product terms in 2-level representation for combinational

logic, OR

(b) minimize dependence among state variables → in turn, will affect #
literals

(c) estimate cost in multi-level representation

2. Views of FSM

3. Formal FSM Model & Notation: 6-tuple < I, S, δ, S0, O, λ >

• I: Inputs

• S: Finite set of states

• δ: S × I → S (next state function)

• S0: set of initial states

• O: Outputs

• λ: output function
(1) S × I → O: Mealy machine

(2) S → O: Moore machine

2 Design Verification Lecture 11

4. Define: 2 states s1 and s2 are distinguishable if ∃ a sequence T such that
λ1(s1, T) 6= λ2(s2, T). In other words, output sequences of applying T to the

2 states differ. The sequence T is called a distinguishing sequence for (s1, s2).
7→ If distinguishing sequence exists, worst-case/longest distinguishing sequence

length |T | = |S|.

5. If no distinguishing sequence exists for (s1, s2), then the state pair (s1, s2) is
said to be an equivalent state pair. Stated differently, s1 & s2 are equivalent iff

each input sequence starting from s1 yields an output sequence identical to that
attained by starting from s2, for all possible & legal input sequences.

6. Define: Reset equivalence: 2 sequential circuits, C1 and C2, with external reset
signals are reset equivalent iff (s1, s2) are equivalent, where s1 is the reset state

of C1, and s2 is the reset state of C2.

7. Identify state equivalence:

• Naive Algorithm

for each pair (s1, s2) in FSM

simulate (s1, Ti) and (s2, Ti) for all possible & different input sequence Ti

if (output sequence differ)

mark (s1, s2) non-equivalent

• Unmarked pairs are equivalent! Simply FSM accordingly.

Example 1

M. Hsiao 3

8. More on state equivalence:

• 2 states are equivalent iff they are n-equivalent, n = |S|.

• 2 states s1, s2 are k-equivalent (s1 ≡k s2) iff 6 ∃ a distinguishing sequence of

length k or less for s1 & s2.

• 1-equivalence: examining the outputs of state transitions of states s1 & s2

• k-equivalence: iteratively determine (k − 1)-equivalences.

Example 2

4 Design Verification Lecture 11

Example 3: Moore Machine (very similar to previous Mealy Machine)

9. Alternative for completely specified FSM: verify by reducing FSM Complexity

= O(N lg N), N = # states (instead of checking for reset equivalence)

• Given 2 STG’s G1 and G2 (both completely specified)
if starting/reset states s1 ∈ G1, s2 ∈ G2 given
→ Reduce G1 to G′

1, G2 to G′
2

if |G′
1| 6= |G′

2|, then they are not equivalent
else check isomorphism/equivalence with (s1, s2) as the starting pair

10. The above techniques may be expensive for circuits with large number of states.
7−→ Need to enumerate states until the reset states are distinguished. Worst

case: need complete reachable state space
7−→ Alternative is to use ATPG to detect the miter output fault, with constraint

added for the stopping criteria (don’t need to backtrace to all-unknown state).
ATPG for the target fault may be exponential in complexity as well.

M. Hsiao 5

11. For circuits without reset (still completely specified FSM)

• Given 2 STG’s G1 and G2 (both completely specified)

→ Reduce G1 to G′
1, G2 to G′

2

if |G′
1| 6= |G′

2|, then they are not equivalent

else
→ concatenate G′

1, G′
2 to get G3

→ reduce G3 to G′
3

→ equivalent(G1, G2) iff |G′
3| ≡ |G′

1|

12. For incompletely specified circuits without reset

→ Reduced STG’s are NOT canonical!!

• There may exist 2 or more irredundant STG’s of different size for the same
STG

• This is due to compatibility issues

Example 4

6 Design Verification Lecture 11

13. For circuits without reset (FSM may not be completely specified)

• different notions of equivalences possible

• 0. classical FSM equivalence: for every state in one circuit, there is an

equivalent state in the other, and vice versa. Computationally expensive.

• 1. sequential hardware equivalence (SHE): two designs have equivalent be-
havior after synchronization of the circuits via an aligning sequence
7−→ an aligning sequence Ta is a sequence that takes M1 to s1 and M2 to s2

such that (s1, s2) is an equivalent state pair

• 2. safe replacement equivalence: stronger than SHE, as one circuit can
replace another, and vice versa:

7−→ if for any state sj ∈ M2, there exists a state si ∈ M1 that can produce
the same output sequence for any input sequence T applied. Then, M2 is a

safe replacement for M1.

• 3. three-valued equivalence: relaxed version of safe replaceability but stronger
than SHE
7−→ λ1(uuu, T) ≡ λ2(uuu, T) for any vector sequence T . In other words,

outputs must match (they must belong to (0,0), (1,1), or (x, x), ie., even for
don’t-cares. But if the output is don’t-care (from an initial unknown state),

we only need to make sure the other circuit also produces don’t-care.

• 4. delay replacement equivalence: relaxed version of safe replaceability but
strong than SHE.

7−→ If for any state sj ∈ M2, there exists a state si ∈ M1 that can produce
the same output sequence for any input sequence T , after n clock cycles
in M2, then M2 is a delay replacement for M1. Essentially, it is like safe

replacement allowing for an n cycle delay version of the implementation.

14. Relationship among different notions of sequential equivalence

M. Hsiao 7

15. Define: a synchronizing sequence is an input vector sequence that can bring the
machine to a unique state from any state.

16. Define: an initialization sequence is a synchronizing sequence that can be verified

by 3-value simulation (i.e., δ(uuu, T) = s1 when T is an initialization sequence
under 3-value simulation)

7−→ an initialization sequence is also a synchronizing sequence, but not vice versa

17. Define: two states s0 and s1 are alignable if ∃ a sequence T such that δ(s0, T) ≡

δ(s1, T). (states reached after application of T are equivalent.
7−→ a universal alignment sequence Ta: δ(s0, Ta) ≡ δ(s1, Ta)∀(s0, s1).

18. Define: Terminal Strongly Connected Component (TSCC): a SCC that does not

have any outgoing edges

19. Post-synchronized reachable state space is a TSCC

20. Reset Equivalence

• Possible Algorithm:

• Let T1 and T2 be the synchronizing/initialization sequences for C1 and C2 re-

spectively. Note that the concatenation T1·T2 is also a synchronizing/initialization
sequence. Let the states reached by T1T2 be s1 and s2 in C1 and C2, respec-

tively.

• C1 and C2 are sequential hardware equivalent iff (s1, s2) is an equivalent state

pair (i.e., T1 · T2 is a universal alignment sequence)

• What if sync sequences do not exist? Need to find the aligning sequence.
7−→ need to find an equivalent state pair (s1, s2) such that both states are

reachable in their respective circuits

8 Design Verification Lecture 11

21. Theorem: Two circuits are SHE iff all state pairs are alignable [Pixley 92]

22. Corollary: Two circuits are SHE iff there exists a universal alignment sequence

• Possible Algorithm:

• first find a set of equivalent state pairs S≡.

• compute the preimage (all states that can reach) of S≡.

• if the preimage is the universe of all states in the product machine, then the

two circuits are SHE.

• In fact, if the preimage contains any reachable state in the miter, then the

two circuits are SHE!

23. Safe Replacement

24. Delay Replacement

• With initial states of the 2 circuits in the miter unconstrained, check if it is
possible to produce a 1 at the XOR miter output after k clock cycles

25. For all notions of sequential equivalence, the problem boils down to determining
if a state pair is an equivalent state pair. Future lectures!!

