Design Verification

Lecture 10 - More Multi-Level Logic Verification

1. Probabilistic verification

e To overcome size and complexity of boolean comparison such as OBDD
e Achieve near 100% confidence on equivalence

e Instead of evaluating on boolean vectors, integer vectors are used
—— Need to map boolean function to an arithmetic function for both spec
and impl circuits — Evaluate integer vectors on these arithmetic functions
to form hash codes (H ) and check for equivalence — Exponential time in
boolean verification reduceable to polynomial time in integer codes

2. Boolean to arithmetic transformation: A-transform

z=(1—x)
TNY=cT Xy

exrxVNy=c+y—xr Xy

e note: all arithmetic operators are conducted modulo p, where p is a prime
integer

e compute hash functions H; and Hs for functions f; and f
— if Hy # Hy, then we know for sure that the two functions are inequivalent
—— else we can say that the two functions are equivalent with a very small
probability of error

Example 1

3. Shannon’s expansion applies to A()



Design Verification Lecture 10

Example 2

4. Error Bounds

e error can occur on aliasing effects
e eg. when both the resulting integer = 0

e Thus, a randomly chosen vector distinguishes the 2 functions with prob of
at least (p;—,})n ~ (1 — 1), where n is the number of inputs
— if in a 64-input circuit, and p is a large 32-bit prime, then error ¢ =
1—-(1-%)="2~15x107° (15 in a billion chance)

e can reduce this error prob by applying k£ multiple runs of applying integer
vectors. error prob now becomes €*

e one may also avoid apply integer 0 or 1 as vectors
5. Mixed-mode

e for n inputs, we can transform v to integers and (n — v) remain as Boolean
e boolean evaluation faster than arithmetic multiply
e disadvantage: error prob increases

e key: how to partition v variables
6. Implementation issues

e one can build BDD for boolean function and convert that to hash function
—— need to build BDD - expensive

e build BDD incrementally, as A-transform also takes place

e convert to an equation and compile/execute. Size of equation may be large

and involves modulo operations

7. Results

e can handle large circuits that OBDD can’t in fraction of time



M. Hsiao 3

8. Timing verification

— Critical path = maximum delay path in combinational portion of circuit
— Need to analyze and verify critical path to meet clock period
— But there are too many paths!!

9. Define: data-ready or arrival time: time at which the signal would settle.
ti = d; + Maz(j.(u; 0)eE) L

Example 3

10. Given a critical path requirement, we can obtain required data-ready time:
ti = Mingj.(o,0;)eE) tj — d;

slack: (quantity of) difference between required arrival time and actual arrival
time:

s =1 —1



Design Verification Lecture 10

Example 4

11. So far, we only talked about topological paths (based on graph of the circuit). It
is possible that a topological path is a false path!

Define: false path: a path when no event (signal transition) can propagate
along it.

Without eliminating false paths, longest topological path(s) may be pessimistic.

Example 5

12. Define: a path is sensitizable if an event can propagate from its tail to its head.
A critical path is a sensitizable path of maximum length.

Example 6



M. Hsiao 5

13. Fixed delay vs. bounded delay

e Fixed delay is unrealistic, since we’re dealing with abstractions of a fabri-
cated circuit. In addition we’re analyzing a family of such chips/circuits, not
just a single chip.

e Need: best and worst case bounds on delays:
— Bounded delay: (min, max)
—— Very difficult to simulate

e If min_delay # 0, we may not satisfy the monotone speed-up property, i.e.,
speeding up one gate may slow down the entire circuit.

e If min_delay = 0, then monotone speedup property is preserved.

Example 7



14.

15.

16.

17.

Design Verification Lecture 10

Define: Controlling value for an AND gate is 0.
A gate is controlled if its output is a controlling value.
Define: a path is statically sensitized by vector V', if along each gate on the
path, the gate output is a controlling value, and side-inputs to the path are all
non-controlling.
How about a gate on path with 2 controlling input values?
—— Not statically sensitizable, but may be co-sensitizable.
In order to identify true false paths, at least one of the following 3 conditions
must hold for all possible input vectors.

e A gate along the path is controlled, not by the path input, but by a side-input

e A gate along the path is controlled by both path and a side-input, but the
side-input controlling value arrives first

e A gate along the path is NOT controlled, but a side-input presents the non-
controlling value last

Example 8



M. Hsiao 7

18. Verification for power consumption: both average and peak power important

e Guarantee battery life

e Design will not result in hot spots
e Ensure circuit reliability

e Power Supply Integrity

e Re-wiring of old buildings

19. Sources of power dissipation:
— Static: leakage currents

— Dynamc: short-circuit and switching current
20. P =1CV? f N, where

e C = output capacitance

oV ="Vu

e f = clock frequency

e N = # times gate switch in one clock cycle

e Need a vector pair to account for power. The first vector initializes all the
gates in the circuit, the second vector toggles some gates

e If assuming zero-delay, N = 1 at most (i.e., a gate can switch at most one
time)

21. P = %V2 f X, C; N; for all n gates
Example 9 (assuming 0 delay)

Example 10



22.

23.

24.

25.

Design Verification Lecture 10

Signal Probability: probability of a signal/gate = logic 1
e P(PI) =0.5
e P(switch on PI) = P(01 or 10) = P(01) + P(10) = (0.5 x 0.5) + (0.5 x 0.5)
= 0.5
Average Switching Activity
Example 11
Static Signal Probabilities

e NOT gate: P, =1— Py
e AND gate: P; = P4, X Pg
e OR gate: (A+B = AB) Pz =1—((1—P4)(1—Pg)) = Pa+ Pg— (P4 x Pp)

Example 12

To avoid signal correlation — write function as a disjoint sum of products

Example 13



M. Hsiao 9

26. Given switching probability, compute switching activities = Need also gate delay
effects

Let e, = ¢(0) @ g(t):

e g(0) = initial value of gate g

g(t) = value of gate g at time t

¢, =0,if g(0) = g(t) = 0;

oeg:0 if g(0) = g(t) = 1;

o 1, if g(0) = 0 and g(t) =

o ¢, =1,if g(0) =1 and g(t) =
27. So,

Navg - Zfor all gates g Ng

N, = Prob(e,)

Ny(g=PI)=05

Ny(othergates) = P(f(g =0) @ f(g = 1))
Example 14

P(g==1)=0.8 = P(g==0) = 0.2

N, =2(0.8 x0.2) =2 x 0.16 = 0.32

Example 15 (Unit Delay)



10 Design Verification Lecture 10

28. Peak Power: Need to find an input vector pair that maximizes circuit activity
e Aspect 1: maximize switching on gates with many fanouts — can be achieved
using test generation techniques

e Aspect 2: maximize # toggles on every gate — need delay information
e NEED TO CONSIDER BOTH ASPECTS!!

29. Exact Peak Power difficult to estimate:

e Lower bound for peak: power is attainable
e Upper bound: actual peak power may be lower than this bound

— Compute peak switching frequency for each node
— get all possible switching times (need delay information)

— Sum up for all gates
— this is a loose upper bound

30. Power in Sequential Circuits: Power vectors consist of PI’s and FF state

e Issue 1: probability of machine being in a particular state

e Issue 2: intermediate state not fully controllable
31. To resolve Issue 1:

e Need STG or extract it from netlist

e calculate probability of circuit being in each state:
Prob(S;) = X, prob(Sp,) x prob(edge,, ;)
where m = # fanin edges to S;



M. Hsiao

Example 16

32. Resolving Issue 2: correlation between starting & intermediate states

e One can take account of all state combinations

e Exact method exponential in computation (such as Chapman-K)
— Need approximation methods!

33. Approximation Method

e Assume all present state lines independent

e Simply propagate line probability as in combinational circuits

11



12

Example 17

Design Verification Lecture 10



M. Hsiao 13

34. High-Level Power Estimation Goal: We want to know power dissipated as a
igh-level model, without having to go through gate-level simulation

— in order to satisfy the power constraints before any synthesis considerations,
including different scheduling, resource sharing.

— without high-level power estimator, the design has to be fully synthesized
to gate-level, before any power estimation is performed. This is inefficient and
expensive.

35. Different from low-level power estimation in that power is estimated not at the
gate level, but at an equation/model level. However, low-level estimation is more
accurate

36. Without low-level information, absolute accuracy is not as important; rather,
relative accuracy is of interest.
— allow quickly estimation of power without simulating 100K+ gates
— compare power efficiency of different hardware configurations

37. Main technique: Macro-Model

— A Macro-model is an equation/model which gives power in terms of some
quantities, which are easily observable at high-level.

Example 18

38. Different Macro-models

e Analytical: independent of internal structure, but on some parameters that
characterize the complexity of the circuit.

e Pre-characterization: use information from low-level implementation. It is
generally more accurate.



14 Design Verification Lecture 10

39. Analytical Methods: Entropy measure

40. Pre-characterization: given a set of vectors, calculate Pj,, D;,, Doy, etc.

— Given parameters of an input set (P, etc.), we can compute the average
power dissipated for the entire set.

41. Cycle-by-cycle power estimation: instead of having one average power value, can
we use the macro-model to estimate pair-wise through a given vector set?



M. Hsiao 15

42.

43.

44.

45.

Architectural level power: estimating power consumed by a program on a target
architecture.
e estimate power of a particular instruction

e granularity: macro-model for the entire processor, or partition the processor
into sub-components

e trade-off between speed and accuracy
One power measure per instruction

e memory instruction
e ALU instruction
e branches

® 1N0-0ps
Estimate power by architectural simulation

¢ simulate each pipeline stage and estimate power for each stage.

e may capture some circuit activity information by switches on buses, etc.
Low-power architectures?

e voltage and frequency scaling

e power mode selection for the memory (turn parts of memory to low-power
mode)

e how do we guarantee execution correctness in place of component power-
downs?



