Design Verification

Lecture 04 - Multi-Level Logic Verification I

1. Technique #1: flatten the multi-level circuits into 2-level and use tautology
checks.
— problem: worst case: flat 2-level representation can have 2"~! terms!

2. Technique #2: Enumeration-simulation (A = B?)

e Enumerate the ON-set cubes of A
cube simulate these cubes on B, if answer is not 1, then A £B
e Enumerate also the OFF-sets of A

cube simulate on B, if answer is not 0, then A £B

This technique is similar to containment checks, except no explicit storing of
covers; instead, we need to enumerate them!

3. Technique #3: Satisfiability (SAT) on the miter circuit

e SAT: given a formula f, derive a value assignment that satisfies f

e need: express the miter circuit in a formula, and satisfy the output of the
miter

e want: the formula for the miter circuit to be reasonably short

e CNF': conjunctive normal form

4. Example la: SAT formula for a two-input AND gate

note: Satisfying the formula means 7 = XY is satisfied.

5. Example 1b: SAT formula for a three-input AND gate



Design Verification Lecture 04

6. Example 1c: SAT formula for an OR gate

Example 2

7. Satisfying the SAT formula: simple algorithm (Davis-Putnam)

a) pick a variable v; (v; may be necessary assignment)
b) set v; = 0 or 1

(
(
(c) unit propagate v; to formula
(d) if any clause evaluates to 0, backtrack
(e) repeat

This algorithm is a search procedure that implicitly traverses the space of 2"
possible binary assignments to the problem. (n=+#tvariables)

Example 3



M. Hsiao 3

Example 3 (cont.)

8. Complexity of SAT solver

e worst case can be exponential in the number of variables
e decision tree: assignments nodes in the search/decision process

e decision level: denotes the level of decision node in decision tree (first decision
is at level 1)

e additional assignments can be derived by deduction/implication process
(eg. if a clause has one unassigned var left, then that var must evaluate to

1)

e deduction process may lead to identification of unsatisfied clauses (all literals
in the clause evaluate to 0)

e backtrack: reversing the current assignment - try another assignment

9. Efficiency of SAT solver depends on:

e quick identification of necessary assignment (all but one variable is 0 in a
clause)



Design Verification Lecture 04

e selection of variable: compute cost in selecting variable v;. Pick best variable.

e carlier backtrack: add additional clauses that may evaluate to 0 if wrong
variable is selected

10. Quick identification of necessary assignment (Boolean Constraint Propagation

(BCP))

e keep a counter on number of unassigned variables in each clause
e keep track on which variable is still unassigned /free in clause

e necessary assignment on unit clauses (unit clause = a clause with one unas-
signed var)

11. Cost of variable v;:

e simple: cost(v;) = # clauses v; appears in

e balanced weight: cost(v;) = K X w(7;) X w(v;), where
w(7;) = # clauses reduced when v; = 0
w(v;) = # clauses reduced when v; = 1
Key: favor variables whose w(v;) ~ w(7;)

e Variable State Independent Decaying Sum (Chaff):

(a) Need: computing occurrences of v; or T;
(b) Each variable in each polarity has a counter, initialize it to 0

(c) When adding a clause (reading in the clause), increment the counter
associated with each literal in the clause

(d) Update the counter whenever a variable is assigned /unassigned

(e) Divide the counter for every variable from time to time to low-pass filter,
allow new conflict clauses added to take heavier weight

(f) Pick unassigned variable with the highest counter value

Example 4



M. Hsiao 5

12. Enable earlier backtrack
e View conflict as opportunity to augment the problem description to increase
deductive power
e conflict assignment: conjunction of conflicting assignment

e conflict-induced clause: negation of the conjunction. This clause does not
exist in current formula

e Add conflict clauses that may evaluate to empty early if wrong variable
assignment is chosen

e These new clauses can prevent occurrence of same conflict in future
e Deriving conflict clause:
(a) includes those literals that occurred at previous decision levels, in addi-

tion to the decision that causes the conflict at current level

Example 5



Design Verification Lecture 04

Conflict-driven learning continued



M. Hsiao

Example 5b



Design Verification Lecture 04

13. Exploring symmetry

e if one branch of x (say x=0) leads to no solution, then we can prune the
space under x=1 further, by looking at the conflicts obtained under x=0.

e concept of supercubing



M. Hsiao 9

14. Technique #4: ATPG: use ATPG to try to detect the miter-output stuck-at-0
fault (bulk of ATPG algorithm covered in Testing course).

15. Basic ATPG algorithm: objective is miter-output = 1

Podem()

if (miter-output == 1) return SUCCESS;

(PI;, val) = backtrace(miter-output, 1);

if (PI; = () return FAILURE;

logic_simulate(P1;, val);

if (Podem() == SUCCESS) /* recursion */
return SUCCESS;

/* reverse decision */

logic_simulate(PI;, not(val));

if (Podem() == SUCCESS) /* recursion */
return SUCCESS;

logic_simulate(PI;, X);

return FAILURE;

backtrace(g, v)
while (g != primary input)
select an input, i, of g whose value is not don’t care (X)
if (g has an inversion) /* NAND, NOR, NOT, etc. */
v = v XOR 1;
g=1
return (g, v);

Example 6:



10

Example 7:

Design Verification Lecture 04



