Design Verification

Lecture 03 - Two-Level Logic Verification

. Logic Verification: Boolean equivalence check of 2 logic circuits; making sure
logic errors are not introduced during synthesis/design

. Miter Circuit

. Naive approach: exhaustive simulation: 2V input vectors needed

. Formal techniques: perform an implicit search; worst case is exponential, but
average case is much smaller!

. A 2-level design may be described as a set of cubes/implicants. Each cube implies
that the output is either true (1) or don’t care (X); the cubes together form a
cover for the output function

Example 1

. Unate functions and covers:

e a function is positive unate in variable z if f, O fz
e a function is negative unate in variable z if f, C f;
e a function is unate if Vz, f, O fz or f. C fz

e a cover is positive unate in variable z if all its cubes have X or 1 in z’s field

A logic function f is monotone increasing (decreasing) in z; if a change in
z; from 0 — 1 (1 — 0) causes f to change from 0 — 1 (1 — 0) or stay
constant.

Design Verification Lecture 03

e A function is unate in z; if it is monotone increasing or decreasing in z;.

Example 2

7. Checking for unateness in covers: Given a cover C for f, if a variable z; is either
’-> or '1’/°0’ in each cube, then f is unate in z;.

Example 3

8. If unate cover = unate function
If unate function A unate cover

9. TAUTOLOGY

e a cover is a tautology if it has a row of don’t cares (tautology cube)

e a cover is NOT a tautology if it has a column of 0’s or a column of 1’s
(function depends on at least one variable)

e a cover is a tautology when it depends on one variable only and both 0 and
1 appear under the variable
1-= f=a+a=1— tautology!
0 -

e a cover is NOT a tautology if it is unate and no row of don’t cares

M. Hsiao 3

10. 2-Level Logic Equivalence
Example 4

11. Co-factor: Given a function f, determine what f would be if a given cube c is
true, f.. Similarly, given the cover C for the function, we can compute C..

Theorem: a cover C contains a cube/implicant « iff C,, is a tautology.

12. Containment Check: ¢ C D if the cofactor D, is a tautology.

Taking co-factor on covers:

e Step 1: eliminate rows that conflict in values with inputs of ¢;
e Step 2: eliminate rows whose output is 0

e Step 3: eliminate columns for which ¢; is specified

Example 5

Example 6 (Containment Check)

Design Verification Lecture 03

Example 7 (Containment Check)

13. Verification algorithm: Given two covers C' and D, for each cube ¢; € C such
that ¢; C D, also for each cube d; C C.

14. Theorem: A unate cover is a tautology iff the cover can be rewritten as one that
contains a row of ’-’s

e If an input column of all 1’s or all 0’s = NOT a tautology

e If f can be partitioned into f = g+h, where g and h have disjoint covers (i.e.,
no common variables), then f is a tautology iff either g or h is a tautology.

Example 8

Example 9

M. Hsiao 5

15. Shannon expansion: f =z f, +Z f;

16. If f is monotonically increasing (positive unate) in 1 = f = z; f;, + f5
° if$1:0:>f($1:0)=f$—1
oif fr=1=f=1since f=x1 f, +1=1
e Similarly for monotonically decreasing variables

e Thus, if we co-factor the cover with the unate variables, and the result is
tautology, then the original cover must be a tautology as well

17. Unate Reduction Theorem:

18. Corollary: Let C' = [A|B], where A contains all the unate columns of f: if there
is NO rows of "-’s in A, then f /~1. (Because no T can be formed from unate
variables)

19. Algorithm:

e Step 1: rearrange columns of C' such that unate rows are placed first
e Step 2: if no rows in A(C = [A|B]), then NOT tautology, else
e Step 3: rearrange rows to

e Step 4: repeat tautology checks only on D

Design Verification Lecture 03

Example 10

20. Recap:
e Verify fi = fo7 (If 30 primary inputs —— 1 billion patterns to explicitly
simulate in the worst case. Thus, need implicit enumeration techniques.)
e For every cube in fi, check if it’s contained in f; and vice versa
e Containment using tautology check.
e Alternatively: XNOR f; and f» and check for tautology.

e Can use multi-level verification (next lectures) on 2-level verification as well

