Design Verification

Lecture 03 - Two-Level Logic Verification

- 1. Logic Verification: Boolean equivalence check of 2 logic circuits; making sure logic errors are not introduced during synthesis/design
- 2. Miter Circuit

- 3. Naive approach: exhaustive simulation: 2^N input vectors needed
- 4. Formal techniques: perform an implicit search; worst case is exponential, but average case is much smaller!
- 5. A 2-level design may be described as a set of cubes/implicants. Each cube implies that the output is either true (1) or don't care (X); the cubes together form a **cover** for the output function

Example 1

- 6. Unate functions and covers:
 - a function is positive unate in variable x if $f_x \supseteq f_{\bar{x}}$
 - a function is negative unate in variable x if $f_x \subseteq f_{\bar{x}}$
 - a function is unate if $\forall x, f_x \supseteq f_{\bar{x}}$ or $f_x \subseteq f_{\bar{x}}$
 - a cover is positive unate in variable x if all its cubes have X or 1 in x's field
 - A logic function f is monotone increasing (decreasing) in x_i if a change in x_i from $0 \to 1$ $(1 \to 0)$ causes f to change from $0 \to 1$ $(1 \to 0)$ or stay constant.

• A function is <u>unate</u> in x_i if it is monotone increasing or decreasing in x_i . **Example 2**

7. Checking for unateness in covers: Given a cover C for f, if a variable x_i is either '-' or '1'/'0' in each cube, then f is unate in x_i .

Example 3

- 8. If unate cover \Rightarrow unate function If unate function $\not\Rightarrow$ unate cover
- 9. TAUTOLOGY
 - a cover is a tautology if it has a row of don't cares (tautology cube)
 - a cover is NOT a tautology if it has a column of 0's or a column of 1's (function depends on at least one variable)
 - a cover is a tautology when it depends on one variable only and both 0 and 1 appear under the variable

$$1 - \Rightarrow f = a + \bar{a} = 1 \rightarrow \text{tautology!}$$

 $0 -$

• a cover is NOT a tautology if it is unate and no row of don't cares

10.	2-Level	Logic	Equiva	lence
TO.		LUSIC	Lquiva	

Example 4

11. Co-factor: Given a function f, determine what f would be if a given cube c is true, f_c . Similarly, given the cover C for the function, we can compute C_c .

Theorem: a cover C contains a cube/implicant α iff C_{α} is a tautology.

12. Containment Check: $c \subseteq D$ if the cofactor D_c is a tautology.

Taking co-factor on covers:

- Step 1: eliminate rows that conflict in values with inputs of c_i
- Step 2: eliminate rows whose output is 0
- Step 3: eliminate columns for which c_i is specified

Example 5

Example 6 (Containment Check)

Example 7 (Containment Check)

- 13. Verification algorithm: Given two covers C and D, for each cube $c_i \in C$ such that $c_i \subseteq D$, also for each cube $d_j \subseteq C$.
- 14. <u>Theorem:</u> A unate cover is a tautology iff the cover can be rewritten as one that contains a row of '-'s
 - If an input column of all 1's or all 0's \Rightarrow NOT a tautology
 - If f can be partitioned into f = g + h, where g and h have disjoint covers (i.e., no common variables), then f is a tautology iff either g or h is a tautology.

Example 8

Example 9

- 15. Shannon expansion: $f = x f_x + \bar{x} f_{\bar{x}}$
- 16. If f is monotonically increasing (positive unate) in $x_1 \Rightarrow f = x_1 f_{x_1} + f_{\bar{x_1}}$
 - if $x_1 = 0 \Rightarrow f(x_1 = 0) = f_{\bar{x_1}}$
 - if $f_{\bar{x_1}} = 1 \Rightarrow f \equiv 1$, since $f = x_1 f_{x_1} + 1 = 1$
 - Similarly for monotonically decreasing variables
 - Thus, if we co-factor the cover with the unate variables, and the result is tautology, then the original cover must be a tautology as well
- 17. <u>Unate Reduction Theorem:</u>

- 18. Corollary: Let C = [A|B], where A contains all the unate columns of f: if there is NO rows of '-'s in A, then $f \not\equiv 1$. (Because no T can be formed from unate variables)
- 19. Algorithm:
 - Step 1: rearrange columns of C such that unate rows are placed first
 - Step 2: if no rows in A(C = [A|B]), then NOT tautology, else
 - Step 3: rearrange rows to
 - Step 4: repeat tautology checks only on D

Example 10

20. Recap:

- Verify $f_1 \equiv f_2$? (If 30 primary inputs \longmapsto 1 billion patterns to explicitly simulate in the worst case. Thus, need implicit enumeration techniques.)
- For every cube in f_1 , check if it's contained in f_2 and vice versa
- Containment using tautology check.
- \bullet Alternatively: XNOR f_1 and f_2 and check for tautology.
- Can use multi-level verification (next lectures) on 2-level verification as well