Understanding SSL/TLS

or What is an SSL Certificate
and
What Does It Do for Me?

J.K. Harris
Electrical and Computer Engineering
Virginia Tech
Oct 2008

1/39

Understanding SSL/TLS

What is It?
How Does It Work?

Why is It Important? (What does it do?)
But, Most Importantly

—> Things the average user should know!

2/39

What is |17

Something about encryption of Web pages

https://...

The “lock icon” at the bottom of your browser

—> Can Safely Type in Your Credit Card Number!

(...are you sure its safe?)

In short, very few people know what SSL/TLS is!

3/39

How Does It Work?

- Based on the RSA algorithm
- |s a public key cryptography system

~ |t takes a little math to understand this
(I'll keep the math to very little!)

4/39

How Does It Work?

A little math:
For properly chosen (e, d, n) c=m modn
—> Functions are inverses of
each other! m=c" mod n
Reference:

http://en.wikipedia.org/wiki/Rsa
l.e., wikipedia “RSA”

5/39

How Does It Work?

(Some hand waving: e is not critical, almost
all RSA use e = 65537)

Think:

m = message

¢ = cypher (encrypted message)
We call:

n —> the Public key
d — the Private key

c=m modn

m=c" modn

How Does It Work?

For properly chosen (e, d, n)

We call:

n —> the Public key

d —> the Private key

—> Given n can not (easily) find d!

c=m modn

m=c" modn

Encryption

Standard usage:

Alice — Bob (= me mod I

Bob properly chooses (e, d, n)

* Bob sends public key (n) to Alice (How?)

* Alice encrypts her message (m)

* Alice sends cypher (c) to Bob

Bob uses his private key (d) to decrypt

8/39

Encryption

Standard usage:

Very Important and Subtle Point:

* Bob sends public key (n) to Alice (How?)

c=m modn

m=c" modn

9/39

Digital Signatures

Signing Digital Documents:
Dlgltal Signa’[ureS C — me mOd n
Bob — Alice
* Bob properly chooses (e, d, n) _
m=c" modn
* Bob sends public key (n) to Alice (How?)

* Bob encrypts his document (c) using his
private key (d) giving cypher (m)

* Bob sends (m) to Alice

* Alice uses Bob's public key (n) to decrypt

10/39

Digital Signatures

Signing Digital Documents:

Very Important and Subtle Point:

* Bob sends public key (n) to Alice (How?)

c=m modn

m=c" modn

11/39

Digital Signatures

Signing Digital Documents:
4
c=m modn
Work equations in “reverse”
Alice knows that Bob sent the message _
nat =o m=c" mod n
because his public key decrypted a

message that could only be created using
Bob's private key.

(This assumes that Alice somehow has Bob's
public key.)

12/39

How Does It Work?

Points to remember:
4
c=m moan
Equations in the “forward” direction —>
encryption J
Equations in the “reverse” direction — m=_c mOd n

message signing (digital signature)

13/39

How Does It Work?

Very Important and Subtle Point:

* Bob sends public key (n) to Alice (How?)

Why? “Man in the Middle Attack”

c=m modn

m=c" modn

14/39

Man in the Middle Attack =i

Alice = H > Bob
Charlie

Charlie has full control of the “wire”

Charlie sends Alice Charlie's Public key in place of
Bob's Public key

Charlie decrypts Alice's message using his own
Private key

Charlie uses Bob's Public to send him any message
he wants

+20

c=m modn

m=c" modn

15/39

Man in the Middle Attack

Alice < l i > Bob
Charlie
Because Alice does not have Bob's public key

— Alice has no way of knowing that she is
not communicating with Bob

— Bob has no way of knowing that the
message did not come from Alice

— Charlie can do anything he wants

c=m modn

m=c" modn

16/39

Man in the Middle

Alice < H > Bob
Charlie = me mod I

How to get Bob's public key safely to
Alice?

m=c" modn

17/39

Man in the Middle

Alice = H > Bob
Charlie

How to get Bob's public key safely to
Alice?

—> “Trusted Third Party” (+ lots of confusion)

c=m modn

m=c" modn

18/39

Trusted Third Party

Introducing “Trusted Third Party”, Vera:
* Vera has her own public and private key

* Vera has her public key widely distributed in a
fashion that everyone believes (How?)

— Generally, everyone's web browser has them “built
in” (Internet Explorer, FireFox, Safari)

* (Think Vera — Verisign)

19/39

Trusted Third Party

* Bob sends his public key to Vera
— Certificate Signing Request (.csr)

* Vera verifies that Bob
“Is who he says he is” (How?)

- This Is what you are paying for!
* Vera “digitally signs™ and returns this to Bob
- SSL/TLS Certificate (.crt)

20/39

eCe
Trusted Third Party i

public key (n)

Vera Bob — certificate | ™ Vera
signing request
public key (n) .CSr
~ (somehow verifies Bob's identity
wieEly prislense) (calls on the phone?)
Generates i Generates
public key . public key
private key) _A_“Cﬁ private key “digitally signs”
(e, d, n) pultnto the (e, d, n) SSL/TLS certificate
aka root certificates .crt
Bob

21/39

Trusted Third Party

Now the communications between Alice and Bob:

Alice asks Bob for his SSL/TLS certificate

Alice checks to see if she can verify the digital signature using
Vera's public key

If the digital signature verifies, and Alice trusts Vera, then Alice
believes that the SSL/TLS certificate came from Bob — No one
else could have generated Vera's digital signature

“Inside” of this SSL/TLS certificate is Bob's public key!

Alice now has Bob's public key and can proceed as before

22/39

+20

Trusted Third Party =
Alice
> Bob
(m) Alice (m) o
hello >
< SSL/TLS
check digital signature certificate
using Vera's “built in” .crt
public key
|
use Bob's public key
RSA _
n cert m=c"modn
found in certificate encrypted message e
© l

s c=mmodn

(m)

23/39

eCe
That's How SSL/TLS Works ==

That's it! That's how SSL/TLS works!

... oimple, right?

Depends upon:
* Trusting Vera:

— Vera actually verifies that Bob “is who he says he is”

— Distribution of Vera's public keys (root certificates)

24/39

eCe
That's How SSL/TLS Works =i

But, think about this a little:

> |n some sense, we have traded the problem of getting Bob's
public key to Alice, for the problem of getting Vera's public key
to Alice.

25/39

ecCe
That's How SSL/TLS Works =

But, think about this a little:

> |n some sense, we have traded the problem of getting Bob's
public key to Alice, for the problem of getting Vera's public key
to Alice.

> But, there is only one Vera, and lots of Bobs!

So, we still have the problem, but we have made the problem
much smaller, and possibly tractable.

26/39

What is |17

* Connection is Encrypted — but that's easy

* Verification of “the other end”

— (via the trusted third party)
— This is the real reason for SSL/TLS!!!

... Is it any thing else?
- NO!

27/39

Lingering Issues

* Trust ends where the credit card begins
* Who's certificate is this?

* Revocation Lists

* Root certificate poisoning

* Your own government

28/39

Trust Ends Where the
Credit Card Begins

— All SSL/TLS tells you is that you have an encrypted
connection to whomever was issued that certificate

— Do you really trust the person at the other end of the
connection?

— Rules governing “verification” (you are who you say you are)
are being weakened

* Due to high volume of certificates issued

* No human in the loop!!!

29/39

Who's Certificate is This?

A.K.A. DNS /URL spoofing

Alice ﬁ i—> Bob

Charlie
* Charlie has his own certificate signed by Vera
* Charlie hands his certificate to Alice

* How is Alice to know its not Bob's certificate?

c=m modn

m=c" modn

30/39

Who's Certificate is This? =iz

Alice ﬁ i—> Bob

Charlie
* Charlie has his own certificate signed by Vera
* Charlie hands his certificate to Alice
* How is Alice to know its not Bob's certificate?

—> Certificate has Bob's “name” on it

+20

c=m modn

m=c" modn

31/39

Who's Certificate is This?

Certificate has Bob's “name” on it?

- What /s Bob's “name”?

- Bob's “name” is his DNS name

—> Always check the URL!

32/39

Always Check the URL?

Is checking the URL sufficient?

What about “similar names”

— www.amazon.com —> www.amazone.com
— www.capitalone.com —> www.capitolone.com
- www.there.com —> www.their.com

- Www.amazon.com —> Www.amazon.com

33/39

Always Check the URL?

Is checking the URL sufficient?

What about “similar names”

— www.amazon.com —> www.amazone.com
— www.capitalone.com —> www.capitolone.com
- www.there.com —> www.their.com

- Www.amazon.com —> Www.amazon.com

34/39

Revocation Lists

Revocation Lists and Short “valid” times
* Certificates usually valid only for 1 — 2 years
* Widely published list of certificates that have been revoked

— Minimize the amount of time a “bad guy” can use his
certificate

— Quickly revoke bad guy's certificate

Largely unused!

* | defy you to find these “widely published” revocation list!!!

35/39

Root Certificate Poisoning

This is a big deal! Most people just ignore this.

Microsoft people clicking “ok” might install a bad guy's root
certificate

Leave your desk, someone could easily, in a couple of clicks,
install his own root certificate

Product update channels get poisoned along the way

36/39

Your Own Government

(Get out your tin-foil hats!)

* The US Government's encryption policy: “Strong enough so that
citizens can't listen to other citizens, but not so strong that the
Government can't’

* You think the Government does not already has Verisign's
private key?

* DES — Government pushed encryption, now known to have
“Government exploitable” weaknesses

* Recent A.Q. Kahn allegations — implies that it took ~3 years to
break encryption on his laptop

37/39

Recommendations
for the Average User

* Don't just click ok to any “certificate error”
popup unless you really know what your
doing!!!

* Check the URL carefully, is it who you think it
should be?

°* Your level of “trust” at the other end of the
connection — Don't deal with unknown web sites

38/39

Recommendations for the ece
Sys Admins and Developers -

* Some way to “shore up” the distribution of root
certificates

* Someway to easily verity if any of your users
have suspicious root certificates

* Someway to actually use those revocation lists
* Education of your users!

* Other??? 39/39

Understanding SSL/TLS

End of first half of talk

Second half, will be a technical “howto”

(If you're a pointy haired boss, now would be a good time to make for the exit.)

40/39

OpenSSL HowTo

There are two things we would like to cover

* Standard SSL use, have “real” signer sign your
certificate — what most people want to do

* “Self signed certificates” — Be your own
signing authority

(This will be a “Linux” point of view howto)

41/39

OpenSSL HowTo

A key concept that was left out of the first half:

SSL/TLS is usually “one sided”

— Anonymous client wants to connect to a verified
server

— Typical web situation

SSL/TLS can be mutual (two sided), just need a
certificate for both ends

— There have been suggestions that all mail servers
should use and require mutual SSL/TLS 42/39

Standard SSL Use

Have “real” signer sign your certificate — what
most people want to do

* Generate your public / private key pair

* Create a “certificate signing request”

* Send it to Verisign

* Receive certificate

* Put files in correct place, and do config files

° Debug 43/39

SSL/TLS “Setup”

public key (n)

vera Bob certificate Vera
signing request
public key (n) s
verifies Bob's identity
(calls on the phone?)
Generates Generates
Y :
i _ public key
pl.Jb“C key Alice e “digitally signs”
private key “built into” the private «ey SSL/TLS ifi
d, n) certificate
(e, d, n) web browser (e, d, :
aka root certificates .CI
Verisign Does This We Do This ¢
Bob

44/39

OpenSSL HowTo

Before we get started, some questions that need
answers:

* Are there different types of certificates?
* Where (what directory) do | do this?

* To Passphrase or not to passphrase?

45/39

OpenSSL HowTo

Are there different types of certificates?

Not really.

Sometime you see instructions for apache mod_ssl,
apache strong hold, etc. These differences are for
config/setup differences.

| use the same certificate for SMTP, LDAP, web.

Caveat: Windows users, | don't really know.

46/39

OpenSSL HowTo

Where (what directory) do | do this?

You often find instructions that so go to such-n-such
directory to generate your keys.

It does not matter. | just make a directory someplace
and use that. Later on, you move all the files to
their proper place.

47/39

OpenSSL HowTo

To Passphrase or not to passphrase?

The short answer is no. Why? Because every time
you reboot your web server you have to type in the
passphrase.

Furthermore, you can “remove” the passphrase
anytime you want.

Just handle your keys and certificates wisely.

48/39

Generate Public & Private Key:

Create a directory somewhere, go there and type:

openssl genrsa -out server.key 1024

File Edit View Terminal Tabs Help

[jkh@jkh test]$ openssl genrsa -out server.key 10824
Generating RSA private key, 1024 bit long modulus
.................................
......................................

unable to write ‘random state’

e is B5537 (0x18081)

[jkh@@jkh test]$ 1s

server.key

[jkh@ikh test]s ||

49/39

Public & Private Keys

Now, lets look inside this file:

openssl rsa -in server.key -text -noout

50/39

Jkh@jkh:~/S5L{test

Ele Edit Wiew Terminal Tabs Help

[jkh@jkh test]s 1s B

server.key

[jkh@jkh test]$ openssl rsa -in server.key -text -noout

Private-Key: (1024 bit)

modulus:
00:bl:62:59:ba:22:3a:T4:8d:4c:04:84:11:6T7:54:
ae:2b:00:54:1a3:89:e1:2e:27:d5:bb:0T:77:ac: fd:
}'4:94:55:lc:BEJ:dB:bB:95:@6:b5:3d:9d:59:95:5?:4; 20 R'D SMaVFO
12:d4:83:5c:ee:3c:27:0e:61:4a:21:d2:86:0e:53:
B7:cd:2f:aB:cf:5a3:ef:15:89:a9:b8:ad:be:20:81:
99:25:68:T3:83:74:f8:Ff5:7a:05:T6:f3:64:65:17:
7b:23:0b:ec:71:b4:04:d1:30:1d:eb:6T:T8:bf:1d:
aB:58:8c:25:51:a88:56:44:17:1d:16:1a:f4:39:ed:
T7:54:c0:b4:69:d0:8T:85:e7 —

publicExponent: 65537 (0x10801) ‘ =

b:dc

privateExponent:
3e:97:eb:fTd:a38:92:91:35:42:F :f6:a2:08:89:
a5:16:2a:96:b6:17:85:c7:fc:bd:93:89:b1:7b:86: (2

a5:c9:13:d3:c4:35:ba:T0:51:08:33:fd:e3:48:e4: —
96:24:fc:a7:fc:85:f3:a7:15:17:b6:48:23:c9:dc: C — m n
d8:e4:d3:23:81:18:8e:60:39:56:67:TC:55:66:df: <~\

db:8c:72:ef:e7:6e:7e:0b:29:bB:ad:bc:71:46:T7:
a9:1b:f1:37:98:d9:ec:cd:18:95:3b:33:6T:29:a8:
66:4b:58:8F:5b:fl:cf:25:43:94:2b:eB:be:fc:11:
18:90:6b:55:01:85:d9:01

primel:
00:e7:30:61:a6:dc:29:47:a38:3fT:cf:c7:ef:76:1b:
2a:58:28:44:70:56:33:33:e26:93:53:0F:75:F7:0d: ‘1

27:39:88:7b:85:10:18:93:08d:25:83:08c:a3:c8:2d:

f@:3c:Ba:ad:e3:c7:ff:3c:14:F7:dB:99:09:d4: Te: —
e2:fc:cl:0a:41 m —C n
prime2:

B8:cd:6b:cB:62:dc:8a:a3d:1b:c6:Bc:1c:53:5e:64:
11:21:41:5d:9e:35:00:58:b5:06:38:T3:77:6e:3e:
2a3:49:41:b6:7e:d3:70:17:71:40:ad:f4:36:a3:b3:
12:8e:66:49:ba:d7:3b:68:2c:d3:61:48:bB:c2:b5:
2d:c7:2d:76:27

exponentl:
7d:89:e1:87:83:17:65:f6:Tf:a6:d7:ef:27:43:35:
7d:5d:5a3:c3:16:083:bc:e3:T8:47:b6:bb:67:29:db:
3a:3c:af:c5:17:56:35:67:8c:49:eb:31:6e:06:7d:
ac:14:93:1e:77:00:1e:b7:cl:3b:de:c9:56:a32:6e:
cB:6e:78:01

exponent2:
B0:82:3d:T2:92:76:62:99:69:d6:83:38:52:00:88:
9d:T0:36:e2:d2:a8:32:09:97:b5:45:13:d7:5c:1b:
el:bf:92:e4:eB:0b:5c:00:cCc:bb:45:39:84:6C:00:
fc:cl:dc:al:a8:10:22:44:e1:49:d4:80:92:04:5a:
4d:2e:c9:51:5T

coefficient: =i
Ob:77:02:2b:a8:24:17:41:65:T3:3d:37:2T:4b:%e:
5T:83:97:Tb:24:57:3e:¢9:96:fC:57:10:69:Te: T4:
53:90:69:21:93:62:c4:3c:9b:e7:cl:8e:lf:ed:e2:
bf:5b:4c:46:58:12:df:23:3d:0c:cO:cf:65:04:17:

Te:00:0a:d6
[jkn@jkh test]s] E 51/39

Create a Certificate Signing Reqg

openssl req -new -key server.key -out server.csr

Asks for your
“name”!!
This MUST be

correct.

ShiEyPO

jkh@jkh:~/S5L/test

File Edit Miew Terminal Tabs Help

[jkh@jkh test]% openssl req -new -key server.key -out server.csr

You are about to be asked to enter information that will be incorporated

into your certificate reguest.

What you are about to enter is what is called a Distinguished Name or a DN.
There are guite a few fields but you can leave some blank

For some fields there will be a default walue,

IT you enter ".', the field will be left blank.

Country Name (2 letter code) [GB]:US

S5tate or Province Name (full name) [Berkshire]:Virginia

Locality Name (eg, city) [Newbury]:Blacksburg

Organization Mame (eg, company) [My Company Ltd]:Virginia Polytechnic Institute
and State University

Organizational Unit Name (eg, section) []:Electrical and Computer Engineering
Common MName (eg, your name or your server's hostname) []:jLS0=tel=I0rkaa-Ts (1
Email Address []:john.harris@vt.edu

Please enter the following 'extra' attributes
to be sent with your certificate reguest

A challenge password []:

An optional company name []:

[jkh@jkh test]s 1s

server.csr server.key

[jkh@jkh test]s

52/39

ECE
Certificate Signing Request =t

To see what is inside the .csr:

openssl req -in server.csr -text -noout

53/39

AFout

ShiEyPO

Jkh@ jkh:~/S5L/test

Fle Edit \iew Terminal Tabs Help

HaS Only pUinC key [jkh@jkh test]s openssl req -in server.csr -text -noout =

Certificate Request:
Data:

(11 L) Version: 0 (0x0)
Eir1(j r]EirT1€3 Subject: C=U5, 5T=Virginia, L=Blacksburg, 0=Virginia Polytechnic Institu
te and 5tate University, OU=Electrical and Computer Engineering, CN=jkh.ece.vt.e
du/emailAddress=john.harris@vt.edu

Subject . -k
Fublic Key Algorithm: rsaEncryption
RSA Public Key: (1824 bit)

Modulus (16824 bit):
BB:bl:62:59:ba:22:33:T4:8d:4c:04:84:11:6T:54:
ae:2b:00:54:1a:a%:el:2e:27:d5:bb:0F:77:ac:fd:

e 74:94:55:1c:80:d8:b8:05:060:b5:3d:9d:5e:95:57:
— 12:d4:83:5c:ee:3c:27:0e:061:4a:21:d2:86:0e:53:

C— m Od n <—_/\' B7:cd:2f:af:cf:5a:ef:15:89:a9:b8:ad:be:20:81:

99:25:68:T3:83:74:f8:T5:7a:05:f6:T3:64:65:17:

JD:23:0b:ec:71:p04:04:d1:30:1d:eb:6T:T8:bf:1d:

al:58:8c:25:51:a28:56:44:17:1d:16:1a:T4:3%9:ed:

....- T7:54:c0:b4:69:d0:87:85:e7

\ Exponent: 65537 (0x100061)

Attributes:
af: e

— d m Signature Algorithm: shalWithRSAEncryption
m _C n 74:38:6d:82:6d:2T:07:10:07:Cca:0b:cb:39:56:al:5e:54:69:
94:pbb:96:32:T8:09:96:24:01:17:de:b5:85:17:cd:a2:df:36:
88:ab:a7:55:81:T2:ch:6e:DB:eB@:9b:d1:28:74:93:8b:26:52:

ba:f8:fc:25:8F:eb:db:12:c2:31:53:0e:ff:dl:67:0C:03:97:

cd:5a3:52:4F:f4:49:dd:00:35:3e:74:4c:0a:0f:cf:0d:90:db:
52:9e:dd:32:95:c7:62:87:33:93:cH6:26:32:92:1d:5b0:99:97T:
2a:dl:dc:95:8e:b6:34:9e:6d:07T:54:85:75:5e:71:70:83:34: m
B9:3c
[jkh@jkh test]s

54739

AFout

Certificate Signing Request

|
20 ShBVPO

The .csris PEM encoded — text format:

File Edit View Terminal Tabs Help

[Jkh@jkh test]$ more server.csr b
————— BEGIN CERTIFICATE REQUEST-----
MITCH]CCAYcCAQAwgdOxCzAIBgNVEAYTALVTMREWDWYDVOQIEWhWaXInaWspYTET
MEEGAIUEEBxMKOmxhY2tzY¥nVyZzEEMDoGAIUEChMZVMLyZ21uaWEgUG9seXR1Y2hu
aWMgsW5zdGLOdXRLIGFUZCEBTAGFRZSEVDEML 22X] zaXR5MSwwKgYDVOOQLEYNFDGY J
dHIpY2FsIGFuZCEDb2 lwdXR1ciBFbmdpbmVlcmluZzEXMBUGALUEAXxMOamtoLmy j
Z552dC51ZHUXITATEBgkghkiGOWBBCOEWEMpvatduatGFycmlzQHZBLmMYkdTCEnzAN
BogkghkiGO9wOBAQEFAADE QAwgYkCogYEASWIZuiTI69 I IMEIORE1SuKwBUGnhLiTY
uw93rP101FUcgNid4B0alPZ1elVcS1INCY jwnDmFKIdKGDIMHZzZS+gz1 rvFYmpuk2+
ITGZIW]zg3T49XoF9vNkZRd7 IwvscbQEBTAMG2 /Avx2gWIwlUahWRBcdFhra0e33
VHMCOadCPhec CAWEAASAAMABGCSqGSTID3D0EBBQUAAAGEBAHQADY JtLWE0BBoLyZ1W
oV5UaZsS71jL4CZYKARTetYUXzaLTNoirplWBEstus0ChbAShOk4smUmrd,/CWP5ts5
wijFaDv/RIwwD181lalk/B5dOANTS0TGoPZW2011Ke3TKVx2qPMEPG] jKeHVuZny rR
3IW0t]5ebQ9UhXVecXCDNAKS 8
————— END CERTIFICATE REQUEST-----
[jkh@jkh test]s

It is typical that you “cut-n-paste” this text into a
web page to submit your .csr to the signing
authority. .

Send Your CSR

* You send your money and your .csr to Verisign
* Verisign somehow verify that “you are you”

* Verisign will sign and send you your X.509
certificate!

56/39

eCe
Receive Your Certificate (X.509).2

Verisign sends you your X.509 certificate!

And for the obligatory look inside:

openssl x509 -in server.crt -noout -text

57/39

Jkh@]Jkh:~/S5L/test

Eile Edit View Terminal Tabs Help

[jkh@jkh test]s$ openssl x589 -in server.crt -noout -text
Certificate:
Data:
Version: 3 (0x2)
Serial Number: 38514 (0x9672)
Signature Algorithm: shalWithRSAEncryption
Issuer: C=ES, S5T=Barcelona, L=Barcelona, 0=IPS Certification Authority s.l., O=general@ipsca.com C.I.F. B-B62
210695, 0U=ipsCA CLASEAl Certification Authority, CN=ipsCA CLASEAl Certification Authority/emailAddress=general@ipsca.
com
Validity
Not Before: Aug 4 22:32:32 2006 GMT
Not After : Aug 3 22:32:32 2008 GMT
Subject: C=U5, 5T=Virginia, L=Blacksburg, 0=Virginia Polytechnic Institute and State University, OU=The Bradle
y Department of Electrical and Computer Engineering, CN=jkh.ece.vt.edu/emailAddress=john.harris@vt.edu
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus (1024 bit):
B0:aB:cc:50:28:35:T1:70:0d:9d:6T:02:94:9%a:08a:
aB:79:ba:fT7:80:97:51:ba:d7:61:85:ba:Te:43:60:
2T:8B8:al:82:8c:f2:dd:ac:db:ce:B8a:94:085:0e:087:
80:88:67:5a:78:3a:f7:35:2b:6d:2a:c2:13:bd:58:
bl:78:p8:11:a8T7:02:38:7C:9%9e:7a:3c:Ta:c9:31:43:
e2:db:57:2d:efT:d7:c6:51:9a:3C: Td:82:90:82:Tf:
2a:19:46:4b:c2:42:be:67:31:74:54:98:28:74:be:
26:48:47:20:13:89:38:38:45:74:b5:99:43:21:34:
B6:8d:7c:1d:9e:c3:fa:bd: 87
Exponent: 65537 (0x10081)
X509v3 extensions:
X509v3 Basic Constraints:
CA:FALSE
Netscape Cert Type:
55L Server
X509v3 Key Usage:
Digital 5Signature, Non Repudiation, Key Encipherment, Data Encipherment, Key Agreement
X509v3 Extended Key Usage:
TLS Web Server Authentication
X509v3 Subject Alternmative Name:
email:john.harris@vt.edu
X509v3 Issuer Alternative Name:
email:general@ipsca.com
Netscape Comment:
Organization Information NOT VALIDATED. CLASEAl Server Certificate issued by https://www.ipsca.com/
Netscape Base Url:
https://www.ipsca.com/ipscaze02/
Netscape CA Revocation Url:
https://www.ipsca.com/ipsca2002/ipsca2@02CLASEAL.crl
Netscape Rewvocation Url:
https://www.ipsca.com/ipsca2@@2/revocationCLASEAL. html?

Signature Algorithm: shalWithRSAEncryption
6d:e5:77:7T4:45:d0:37:b4:70:F4:9c:22:cc:16:9b:28:39:8T:
dl:78:c3:0b:f8:12:53:88:7d:T4:ea:75:29:d6:b2:14:15:28:
ce:a7:3a:4e:dB:e6:12:2b:43:63:c2:95:c7:ef:06:a7:089:a6:
6d:95:17:fd:ca:66:6a:c4:ba:42:62:4d:9a:af:8b:c3:87:7b:
db:bd:60:30:da:7f:72:al:087:cd:a3:d6:8d:ac:40:53:91:70:
23:cT:12:20:b6:26:23:02:d3:78:06:4e:eb:c3:2b:52:4T:8d:
bf:33:f6:e5:a3b:3b:46:16:dd:df:b2:c9:6e:65:3a:Tb:8Bd:6e:
Ba:cT

[*)

|
ShBVPO

(«]

58/39

seeitgo.
Apache setup:

vi /etc/hittpd/conf.d/ssl.conf

c=m modn

m=c' modn

AFout

ShiEyPO

jkh@monitor:~

File Edit \Miew Terminal Tabs Help

Server Certificate:

Point 55LCertificateFile at a PEM encoded certificate. IfT

the certificate is encrypted, then you will be prompted for a
pass phrase. Note that a kill -HUP will prompt again. A new
certificate can be generated using the genkey(l) command.
#jkh SSLCertlflcateFlle fetc/pki/tls/certs/localhost.crt
S55LCertifica = fetc/pki/ftls/certs/server.crt

Server Private Key:

If the kKey is not combined with the certificate, use this

directive to point at the key file. Keep in mind that if

you've both a RSA and a DSA private key you can configure

both in parallel {to alsoc allow the use of DSA ciphers, etc.
#jkh SELCertlflcateKeyFlle fetc/pki/ftls/private/localhost.key
55LCertificatekKeyFile fetc/pki/tls/private/server.key

Server Certificate Chain:

Point 55LCertificateChainFile at a file containing the
concatenation of PEM encoded CA certificates which form the
certificate chain for the server certificate. Alternatively
the referenced file can be the same as 55LCertificateFile
when the CA certificates are directly appended to the server
certificate for convinience.

#55LCertificateChainFile fetc/pki/ftls/certs/server-chain.crt
#ikh

S55LCertificateChainFile fetc/pki/tls/certs/IPS-IPSCABUNDLE.crt

#oH o oW H KW

133,0-1

)

51%

Testing Apache

Restart you web server, and try
https://<machine.domain>

It all goes well, you see the little “lock” appear
with no “certificate error” popups.

60/39

Debugging

We all know that in the real world, everything works
perfectly, the first time, every time... But should that
exceedingly rare event actually occur where things
aren't working...

* Take a long look at the conf file, make sure the
files are where you say they are

* Look at the log files (note ssl has separate log
files ssl _access log, ssl _error_log)

61/39

Debugging

And lastly, try

openssl s_client -connect <machine>:<port> -debug -state
Keep in mind that the port number changes for SSL.
For web servers, it is not port 80, but port 443.

What this does is gives you a lot of output, but most
importantly, a bidirectional connection to your
web server through SSL.

62/39

Debugging

openssl s_client -connect filebox.ece.vt.edu:443 -debug -state

S0, you must be able to “speak HTTP”. Type the
above and admire the voluminous output. It will
wait for input. There is no prompt, just type:

GET /HTTP1.0<enter>

<enter>

More voluminous output, but you should see
some HTML looking stuft.

63/39

Standard Use

Thats it! Its that simple, only two commands:

openssl genrsa -out server.key 1024

openssl req -new -in server.key -out server.csr

Note(s) to self:

— Protect your keys, especially the private key.
Change file/directory permissions.

- Make a backup of your keys! If you lose your
certificate, they are not suppose to issue you
another one (but they do).

64/39

Self Signed Certificates

“Self signed certificates”
— Be your own signing authority

* What do you mean “Self signed certificate”?
* Why would you want to do this?

* What happens when you use your self signed
certificate?

* And of course, how do you do this?

65/39

What Do You Mean by
“Self Signed Certificate™?

* The term “Self signed certificate” is incorrect,
the proper phrase is “Being your own Certificate
Authority”, or CA

* You have the “root key”

* And you can “sign” other certificates

66/39

€CE
Why Would You Want to do This2::-

* Cost — free. Any linux box that has openssl|
installed (all) has everything you need

* Provides encryption, but no “verification”

* Closed systems. Sometimes you want to keep
others out. Ex. LDAP /w “require ssl”

* Keep “Big Brother” from snooping!

67/39

Self Signed Certificates

What happens when you use your self signed
certificate?

* Some applications won't proceed, e.g., LDAP
requre ssl

* Well, you get the “certificate error” popup
* You can “install” the public key

* Or you can “install” the root certificate

68/39

Self Signed Certificates

There is a lot of confusion on the net about this. If you
google “self signed certificate” will get lots of hits. They!'ll
give you some commands to type, but almost all of the
Instructions lack explanation (that | can understand).

... But all these web pages give different
instructions!

69/39

Self Signed Certificates

Before we get started, one important point:

— Private keys do not have the “name” in them

— Public keys (AKA X.509) Certificates have the
‘name”

When you create an X.509 certificate, you will be
asked for the “name”. The “name” is actually
more than just the DNS, it is also your

“location”, “affiliation” and perhaps a
“responsible party”. (Other?)

70/39

Self Signed Certificates

O.k., enough adieu, lets get started.
We need:

* Two sets of keys:

— The CA's keys (Certificate Authority)

— The certificate you are going to “sign”

71/39

SSL/TLS “Setup”

CA
public key (n)
Generates v
public key CA
private key Distributed
(e d n) Somehow

public key (n)

Server certificate CA
signing request
.CSr
|dentity
Verification?
Generates H
public key
private key “digitally signs”
(e, d, n) SSL/TLS certificate
.crt
Server

72/39

Self Signed Certificates

Step 1: Create the CA's key pair
openssl genrsa -out CA.key 1024

73/39

Self Signed Certificates

Step 2: The CA needs its own “certificate”
Why?

—> This is the “widely published” “root certificate”

openssl req -new -x509 -days 3650 -key CA.key -out
CA.crt
—> Ask for “name”

This “name” is the CA's nhame!!! Not a valid DNS
name.

74/39

AFout

Self Signed Certificates

|
20 ShBVPO

jkh@jkh:~/S5L{testd

Create File Edit View Terminal Tabs Help

[jkh@jkh testd4]% openssl genrsa -out CA.key 1024 k=
Generating RSA private key, 1024 bit long modulus
T (. it
CA's root | ™
unable to write 'random state’
e is 65537 (0x18001)
[jkh@@jkh testd]s 1s
CA. key
[jkh@jkh testd]% openssl reg -new -x509 -days 3560 -key CA.key -out CA.crt
You are about to be asked to enter information that will be incorporated
into your certificate reguest.
(:; What you are about to enter is what is called a Distinguished Name or a DN.
reate There are gquite a few fields but you can leave some blank
For some fields there will be a default wvalue,
IT you enter ".', the Tield will be left blank.

rOOt Cert Country Name (2 letter code) [GB]:US

S5tate or Province Name (full name) [Berkshire]:Virginia
Locality Name (eg, city) [Newbury]:Blacksburg
Organization MName (eg, company) [My Company Ltd]:Virginia Polytechnic Institute and 5State University |
(aSkS for Organizational Unit Name (eg, section) []:Electrical and Computer Engineering

Common Name (eg, your name or your server's hostname) []:Virgina Tech, ECE Certificate Authority
Email Address []:john.harris@vt.edu
[jkhi@jkh testd]s 1s
CA.crt CA.key

“Name”) [jkn@jkh test4]s |] =]

75/39

Self Signed Certificates

Note: For the pedantic minded people, the “root
certificate” is the only “self signed” certificate.

76/39

Self Signed Certificates

Step 3: Create the private key for the server.
(The “server” In this case, Is you web server.)

Just like any other public/private key generation:

openss| genrsa -out server.key 1024

77/39

Self Signed Certificates

Step 4: Create a “Certificate Signing Request”
openssl req -new -key server.key -out server.csr

This will ask you for the “name” of the machine.
In this case you must use the DNS name!!!

78/39

Self Signed Certificates

Step 5: “Sign” the certificate.

openss| x509 -req
-days 3650
-CA CA.crt -CAkey CA .key
-set serial 01
-In server.csr
-out server.crt

79/39

a Jkh@jkh:~/SSL/test4

File Edit View Terminal Tabs Help

[jkh@jkh testd4]s openssl genrsa -out server.key 1024

Generating RSA private key, 1024 bit long modulus

......... -

......... -

unable to write 'random state’

e is 65537 (0x18001)

[jkh@jkh testd4]% openssl reqg -new -key server.key -out server.csr

¥You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default wvalue,

If you enter *".', the field will be left blank.

Country Name (2 letter code) [GB]:US

S5tate or Province Name (Tull name) [Berkshire]:Virginia

Locality Name (eg, city) [Newbury]:Blacksburg

Organization Mame (eg, company) [My Company Ltd]:Virginia Polytechnic Institute and 5tate University
Organizational Unit MName (eg, section) []:Electrical and Computer Engineering
Common Mame (eg, your name or your server's hostname) []:jkh.ece.vt.edu

Email Address []:john.harris@vt.edu

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

[jkh@jkh testd]s 1s

CA.crt CA.key server.csr server.key

[jkh@jkh test4]% openssl x509 -req -days 3650 -in server.csr -CA CA.crt -CAkey CA.key -set serial 01 -ou
t server.crt

Signature ok

subject=/C=U5/5T=Virginia/L=Blacksburg/0=Virginia Polytechnic Institute and S5tate University/0U=Electric
al and Computer Engineering/CN=jkh.ece.vt.edu/emailAddress=john.harris@vt.edu

Getting CA Private Key

unable to write 'random state’

[jkh@jkh testd4]s 1s

CA.crt CA.key server.crt server.csr server.key

[jkh@jkh test4]s D

|
ShBVPO

80/39

Self Signed Certificates

°* You can “look at” the certificates the same as
above.

°* You install the certificates the same as above.

* And of course, debug as before.

81/39

Self Signed Certificates

O.k., so you've created your own self signed
certificate, now what?

* Always get the certificate error popup — just
click OK

* Accept the certificate forever — no more popup.

* Install the “root certificate” — no popups for any
certificate signed by this CA.

82/39

OK

AFout

|
20 ShBVPO

Unable to verify the identity of jkh.ece vt.edu as a trusted site.

Possible reasons for this error:

- Your browser does not recognize the Certificate Authority that issued the site's
certificate.

- The site's certificate is incomplete due to a server misconfiguration.
- You are connected to a site pretending to be jkh.ece vt.edu, possibly to obtain your
confidential information.

Please notify the site's webmaster about this problem.
Before accepting this certificate, you should examine this site's certificate carefully.

Are you willing to to accept this certificate for the purpose of identifying the Web site
jkh.ece vt.edu?

Examine Certificate...

() Accept this certificate permanently
@) Accept this certificate ternporarily for this session

) Do not accept this certificate and do not connect to this Web site

83/39

Examine the Certificate

Sure enough,
we see our

certificate.

AFout

|
ShBVPO

General Details|

Could not verify this certificate because the issuer is unknown.

Issued To

Common Narme (CN)
Organization (O)
Organizational Unit (OU)
Serial Number

Issued By

Commaon Name (CN)
Organization (O)
Qrganizational Unit (OU)

Validity
Issued On
Expires On

Fingerprints
S5HAI1 Fingerprint
MD5 Fingerprint

Certificate Viewer:"jkh.ece.vt.edu"

jkh.ece vt.edu
VT

ECE

01

ECE CA
Virginia Tech
ECE

1042772008
08/17/2011

CO:F2:F7:B6:2C:1E:50:B5:87:8E:1F.CE:BB:00:BC:2D:38:E9:24:69
EF:B1:80:BA:33:FC:66:87:88 :EE:7TA:BE:6F:5B:89:25

......................................

84/39

Accept the Certificate

AFout

|
20 ShBVPO

You can “bless” this certificate and get rid of the

Popup.

Unable to verify the identity of jkh.ece vt.edu as a trusted site.

Possible reasons for this error:

- Your browser does not recognize the Certificate Authority that issued the site's
certificate.

- The site's certificate is incomplete due to a server misconfiguration.
- You are connected to a site pretending to be jkh.ece vt.edu, possibly to obtain your
confidential information.

Please notify the site's webmaster about this problem.
Before accepting this certificate, you should examine this site's certificate carefully.

Are you willing to to accept this certificate for the purpose of identifying the Web site
jkh.ece vt.edu?

Examine Certificate...

@ ‘Accept this certificate permanently

) Accept this certificate ternporarily for this session

) Do not accept this certificate and do not connect to this Web site

lXCanceI| | &J ok

85/39

Accept the Certificate

Let's take a look at what “accepting the

certificate” did. Click: Edit, Preferences, tab

Advanced, Vieyv Certificate_sﬂ_h.__ _I__l_qw click: t

Web S |teS . [Your Certificates | Other People's| Web Sites | Authorities |
Yfou have certificates on file that identify these web sites:
Certificate Name Purposes |Eﬂ|
= Virginia Tech
jkh.ece.vt.edu Client,5erver
Import '
[o |

86/39

Install “Root Certificate”

Suppose you have a number of places that you
might use a certificate that is signed by your
CA. Rather than accepting the certificate for a
given web site, you could install the CA's root
certificate.

his has the affect of saying: “I trust all
certificates signed by this CA.”

87/39

Install “Root Certificate”

A quick way of doing this is to put the file CA.crt
on a web page. Then, from your browser, just
click on the file, the browser will know what
a .crt file is.

88/39

= Index of /~jkh - Mozilla Firefox

File Edit View Go Bookmarks Tools Help

@-o -5 OR[E http:]E] ©co [[CL

| | Fedora Weekly News M Red Hat Magazine | | JWeather | JRadio

T index of /~Jkh]
Index of /~jkh

MName L ast modified Size Description

a Parent Directory -
E} Beer/ 28-Feb-2008 13:45 -
?) cacn

(03 DragMath/

E} OpNet Web Page/
E} Pictures/

@ Session.tar

a autobook-1.5/

E} autoconf/

@ logo_small. GIF

27-Oct-2008 15:539 11K
20-Sep-2007 18:34 -

03-Oct-2008 10:57 -

09-Jul-2007 23:30 =
O07-May-2007 15:28 1TOK
08-Feb-2006 07:10 -
08-Feb-2006 07:10 =
06-Mar-2007 10:52 4.9K

@ spacer01.gif 06-Mar-2007 10:52 75

@ spacer0] a.gif O6-Mar-2007 10:52 93
@ university_title 1.GIF 06-Mar-2007 10:52 36K
va tech opnet page.htm] 06-Mar-2007 10:52 13K

Apache/2.2.6 (Fedora) Server at jkh.ece.vt.edu Port 80

Done

+20
R+{] W)
1)
7
6
AFin 2f4 Dz PR
R R2 R1 AFout
—:I—|_
ond I

|
ShBVPO

89/39

Install “Root Certificate”

You must say “for what” you will trust this root
certificate:

1. Web

You have been asked to trust a new Certificate Authority (CA).

2 e m ai I Do you want to trust "ECE CA" for the following purposes?
" [/] (Trust this CA to identify web sites.

[Trust this CA to identify email users.
] Trust this CA to identify software developers.

3. Java applet

Before trusting this CA for any purpose, you should examine its certificate and its policy
and procedures (if available).

View . Examine CA certificate

|. ¥ cancel | | & ok |

90/39

Install “Root Certificate”

Let's take a look at what “installing the root
certificate” did. Click: Edit, Preferences, tab
Advanced, Vieyv Certificates. Now click: t
Authorities. | reesmmmesmwossmms

Yfou have certificates on file that identify these certificate authorities:

Certificate Name Security Device |Eﬂ|
Class 2 Public Primary OCSF Res... Builtin Object Token |
Class 2 Public Primary OCSP Res... Builtin Object Token
WVeriSign Time Stamping Authority... Builtin Object Token

=l Virginia Tech

=l Wells Fargo

Wells Fargo Root Certificate Auth... Builtin Object Token
=l XRamp Security Services Inc

XRamp Global Certification Autho... Builtin Object Token

= beTRUSTed
beTRUSTed Root CA Builtin Object Token |~
View || Edit | | Import | | Delete

(& |

91/39

Self Signed Summery

* Generate CA (.key and .crt):

openssl genrsa -out CA.key 1024
openssl req -new -x509 -days 3650 -key CA.key -out CA.crt

* Generate server (.key and .csr):

openssl genrsa -out server.key 1024

openssl| req -new -key server.key -out server.csr

* “Sign” the certificate (.crt):

openssl x509 -req -days 3650 -set_serial 01
-CA CA.crt -CAkey CA.key
-in server.csr -out server.crt

92/39

Understanding SSL/TLS

Wrapping up, last comments

* We talked about SSL, what about TLS?
* Something about DSA

* Protocols that support SSL/TLS

* Things not covered in this talk

93/39

What About TLS?

Trying to SSL existing applications required a
second “TCP port”. Eg. www: 80 (non-SSL) &
443 (SSL port), SMTP: 25 & 465, IMAP: 143 &

585. “Port proliferation”.

LS is basically SSL, but you start the connection
unencrypted, and ask: “Can you do TLS?”
hen enter into the SSL protocol.

94/39

Something About DSA

In addition to the RSA algorithm, there are
several other algorithms, but to the best of this
authors research, the only one widely
implemented is RSA.

In short, someday we might have something
other than RSA, but for right now, just use RSA.

95/39

Protocols That Support SSL/TLS

* WWW * CORBA

* nntp * Oracle

* imap * MS Global Catalog
° Pop

* SMTP

* ftps

* LDAP

96/39

cCe
Things Not Covered in This Talk:

— Being a “real” CA — more complicated than you'd
ever expect; revocation list, serial numbers, etc.

— Mutual trust: certificate at both ends of the
connection. Eg. LDAP, SMTP?

— Programming using SSL/TLS

— Understanding the rhyme and reason behind
openssl's command line...

— How to do this using Windows

97/39

Understanding SSL/TLS

References:

* www.openssl.org

* www.openldap.org

* wWww.courier-mta.org

* http://www.madboa.com/geek/openssl/
(Recommended!)

98/39

http://www.openssl.org/
http://www.openldap.org/
http://www.courier-mta.org/
http://www.madboa.com/geek/openssl/

Understanding SSL/TLS

The End (Finally!)

99/39

